K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2019

a)      \(y=f\left(x\right)=-\frac{1}{2}x\)

\(f\left(-2\right)=-\frac{1}{2}.\left(-2\right)=1\)

\(f\left(3\right)=-\frac{1}{2}.3=-\frac{3}{2}\)

b)

Cho \(x=1\Rightarrow y=-\frac{1}{2}.1=-\frac{1}{2}\)

                   \(\Rightarrow A\left(1;-\frac{1}{2}\right)\)

O 1 2 1 2 -1 -2 -1 -2 -1/2 A y=-1/2x

Hình ko đẹp lắm mong cậu thông cảm

4 tháng 9 2019

\(f\left(x\right)=\frac{x^2+2x+1-x^2}{x^2\left(x+1\right)^2}=\frac{\left(x+1\right)^2-x^2}{x^2\left(x+1\right)^2}=\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}\)

\(\Rightarrow f\left(1\right)+f\left(2\right)+....+f\left(x\right)=1-\frac{1}{2^2}+\frac{1}{2^2}-....-\frac{1}{\left(x+1\right)^2}\)

\(\Rightarrow\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x=\frac{x\left(x+2\right)}{\left(x+1\right)^2}\)

\(\Leftrightarrow\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x=\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-20+\left(x+1\right)=\frac{x\left(x+2\right)}{\left(x+1\right)^2}\)

Dat:\(x+1=a\Rightarrow\frac{\left(2y+1\right)a^3-20a^2-1}{a^2}=\frac{a^2-1}{a^2}\Leftrightarrow\left(2y+1\right)a^3-20a^2-1=a^2-1\)

\(\Leftrightarrow\left(2y+1\right)a^3-20a^2=a^2\Leftrightarrow\left(2ay+a\right)-20=1\left(coi:x=-1cophailanghiemko\right)\)

\(\Leftrightarrow2ay+a=21\Leftrightarrow a\left(2y+1\right)=21\Leftrightarrow\left(x+1\right)\left(2y+1\right)=21\)

23 tháng 3 2019

a) \(f\left(\frac{-1}{2}\right)\) 

Thay x = -1/2 vào ta được: \(y=f\left(\frac{-1}{2}\right)=\left(\frac{-1}{2}\right)^2-5.\left(\frac{-1}{2}\right)+1=\frac{15}{4}\)

\(f\left(3\right)\)

Thay x = 3 vào ta được: \(y=f\left(3\right)=3^2-5.3+1=-5\)

b) Để f(x) = 1

Suy ra: \(x^2-5x+1=1\)

\(\Leftrightarrow x^2-5x=0\)

\(\Leftrightarrow x\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)

Vậy khi x = 0 hoặc x = 5 thì f(x) = 1

23 tháng 3 2019

A(1;3);B(-1;7)