Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Phương trình tiếp tuyến Δ của C m tại điểm có hoành độ x 0 = 2 là:
- Suy ra diện tích tam giác OAB là:
- Theo giả thiết bài toán ta suy ra:
Chọn A.
- Phương trình tiếp tuyến Δ của C m tại điểm có hoành độ x 0 = 2 là:
- Suy ra diện tích tam giác OAB là:
- Theo giả thiết bài toán ta suy ra:
Chọn A.
\(y'=\dfrac{-4}{\left(x-1\right)^2}\)
a) \(y'=-1\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
pt tiếp tuyến : \(\left[{}\begin{matrix}y=-\left(x-3\right)+4=-x+7\\y=-\left(x+1\right)=-x-1\end{matrix}\right.\)
b) \(k=\pm1\)
\(y'< 0\forall x\Rightarrow y'=-1\)
làm như trên
c) hoành độ tiếp điểm \(x=\pm2\)
TH x = 2
\(k=-4\)
pt tiếp tuyến : \(y=-4\left(x-2\right)+6=-4x+14\)
TH x = -2
\(k=-\dfrac{4}{9}\)
pt tiếp tuyến : \(y=-\dfrac{4}{9}\left(x+2\right)+\dfrac{2}{3}=-\dfrac{4}{9}x-\dfrac{2}{9}\)
\(y'=\dfrac{\left(5x-1\right)'\left(x+2\right)-\left(5x-1\right)\cdot\left(x+2\right)'}{\left(x+2\right)^2}\)
\(=\dfrac{5\left(x+2\right)-5x+1}{\left(x+2\right)^2}=\dfrac{5x+10-5x+1}{\left(x+2\right)^2}=\dfrac{11}{\left(x+2\right)^2}\)
\(f\left(-1\right)=\dfrac{-5-1}{-1+2}=-6\)
f'(-1)=11/(-1+2)^2=11
Phương trình tiếp tuyến tại M(-1;-6) là:
y=11(x+1)+(-6)=11x+11-6=11x+5
Ta có:
- Lấy điểm M(x0;y0) ∈ (C).
- Phương trình tiếp tuyến tại điểm M là:
+ Giao với trục hoành:
+ Giao với trục tung:
- Ta có:
- Theo giả thiết tam giác OAB có diện tích bằng 2 nên:
- Ta có :
Lấy điểm M ( x 0 ; y 0 ) ∈ C .
+ Phương trình tiếp tuyến tại điểm M là:
+ Giao với trục hoành:
+ Giao với trục tung:
- Ta có:
- Theo giả thiết tam giác OAB có diện tích bằng 2 nên:
Chọn D
\(y'=\dfrac{-4}{\left(x-1\right)^2}\)
a. \(\dfrac{2x+2}{x-1}=-2\Rightarrow2x+2=-2x+2\Rightarrow x=0\Rightarrow y'\left(0\right)=-4\)
Phương trình tiếp tuyến: \(y=-4\left(x-0\right)-2\)
b. Tiếp tuyến song song đường thẳng đã cho nên có hệ số góc k=-4
\(\Rightarrow\dfrac{-4}{\left(x-1\right)^2}=-4\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=-2\\x=2\Rightarrow y=6\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-4\left(x-0\right)-2\\y=-4\left(x-2\right)+6\end{matrix}\right.\)
c. Gọi \(M\left(x_0;y_0\right)\) là tọa độ tiếp điểm
Pt tiếp tuyến qua M có dạng: \(y=\dfrac{-4}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{2x_0+2}{x_0-1}\)
Do tiếp tuyến qua A nên:
\(3=\dfrac{-4}{\left(x_0-1\right)^2}\left(4-x_0\right)+\dfrac{2x_0+2}{x_0-1}\)
\(\Leftrightarrow x_0^2-10x_0+21=0\Rightarrow\left[{}\begin{matrix}x_0=3\Rightarrow y'\left(3\right)=-1;y\left(3\right)=4\\x_0=7;y'\left(7\right)=-\dfrac{1}{9};y\left(7\right)=\dfrac{8}{3}\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-1\left(x-3\right)+4\\y=-\dfrac{1}{9}\left(x-7\right)+\dfrac{8}{3}\end{matrix}\right.\)
d.
Do tiếp tuyến tạo với 2 trục tọa độ 1 tam giác vuông cân nên có hệ số góc bằng 1 hoặc -1
\(\Rightarrow\left[{}\begin{matrix}\dfrac{-4}{\left(x-1\right)^2}=1\left(vô-nghiệm\right)\\\dfrac{-4}{\left(x-1\right)^2}=-1\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^2=4\Rightarrow\left[{}\begin{matrix}x=3\Rightarrow y=4\\x=-1\Rightarrow y=0\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn:
\(\left[{}\begin{matrix}y=-1\left(x-3\right)+4\\y=-1\left(x+1\right)+0\end{matrix}\right.\)
\(y'=\dfrac{-3-m}{\left(x-1\right)^2}\) ; \(y\left(2\right)=m+5\) ; \(y'\left(2\right)=-m-3\)
Phương trình tiếp tuyến tại điểm có hoành độ \(x=2\):
\(y=\left(-m-3\right)\left(x-2\right)+m+5\)
\(\Leftrightarrow y=-\left(m+3\right)x+3m+11\)
Để tiếp tuyến cắt 2 trục tạo thành tam giác \(\Rightarrow m\ne\left\{-3;-\dfrac{11}{3}\right\}\)
Gọi A và B lần lượt là giao điểm của tiếp tuyến với Ox và Oy
\(\Rightarrow A\left(\dfrac{3m+11}{m+3};0\right)\) ; \(B\left(0;3m+11\right)\)
\(\Rightarrow OA=\left|\dfrac{3m+11}{m+3}\right|\) ; \(OB=\left|3m+11\right|\)
\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{25}{2}\Rightarrow\dfrac{\left(3m+11\right)^2}{\left|m+3\right|}=25\)
\(\Leftrightarrow\left(3m+11\right)^2=25\left|m+3\right|\Rightarrow\left[{}\begin{matrix}\left(3m+11\right)^2=-25\left(m+3\right)\\\left(3m+11\right)^2=25\left(m+3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}9m^2+91m+196=0\\9m^2+41m+46=0\end{matrix}\right.\) \(\Rightarrow m=...\)