K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 4 2021

\(y'=\dfrac{-3-m}{\left(x-1\right)^2}\) ; \(y\left(2\right)=m+5\) ; \(y'\left(2\right)=-m-3\)

Phương trình tiếp tuyến tại điểm có hoành độ \(x=2\):

\(y=\left(-m-3\right)\left(x-2\right)+m+5\)

\(\Leftrightarrow y=-\left(m+3\right)x+3m+11\)

Để tiếp tuyến cắt 2 trục tạo thành tam giác \(\Rightarrow m\ne\left\{-3;-\dfrac{11}{3}\right\}\)

Gọi A và B lần lượt là giao điểm của tiếp tuyến với Ox và Oy

\(\Rightarrow A\left(\dfrac{3m+11}{m+3};0\right)\) ; \(B\left(0;3m+11\right)\)

\(\Rightarrow OA=\left|\dfrac{3m+11}{m+3}\right|\) ; \(OB=\left|3m+11\right|\)

\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{25}{2}\Rightarrow\dfrac{\left(3m+11\right)^2}{\left|m+3\right|}=25\)

\(\Leftrightarrow\left(3m+11\right)^2=25\left|m+3\right|\Rightarrow\left[{}\begin{matrix}\left(3m+11\right)^2=-25\left(m+3\right)\\\left(3m+11\right)^2=25\left(m+3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}9m^2+91m+196=0\\9m^2+41m+46=0\end{matrix}\right.\) \(\Rightarrow m=...\)

26 tháng 12 2019

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Phương trình tiếp tuyến Δ của  C m  tại điểm có hoành độ  x 0   =   2 là: 

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Suy ra diện tích tam giác OAB là:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Theo giả thiết bài toán ta suy ra:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

Chọn A.

19 tháng 7 2017

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Phương trình tiếp tuyến Δ của  C m  tại điểm có hoành độ  x 0   =   2  là: 

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Suy ra diện tích tam giác OAB là:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

- Theo giả thiết bài toán ta suy ra:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 1)

Chọn A. 

4 tháng 4 2021

\(y'=\dfrac{-4}{\left(x-1\right)^2}\)

a) \(y'=-1\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

pt tiếp tuyến : \(\left[{}\begin{matrix}y=-\left(x-3\right)+4=-x+7\\y=-\left(x+1\right)=-x-1\end{matrix}\right.\)

b) \(k=\pm1\)

\(y'< 0\forall x\Rightarrow y'=-1\)

làm như trên

c) hoành độ tiếp điểm \(x=\pm2\)

TH x = 2 

\(k=-4\)

pt tiếp tuyến : \(y=-4\left(x-2\right)+6=-4x+14\)

TH x = -2

\(k=-\dfrac{4}{9}\)

pt tiếp tuyến : \(y=-\dfrac{4}{9}\left(x+2\right)+\dfrac{2}{3}=-\dfrac{4}{9}x-\dfrac{2}{9}\)

\(y'=\dfrac{\left(5x-1\right)'\left(x+2\right)-\left(5x-1\right)\cdot\left(x+2\right)'}{\left(x+2\right)^2}\)

\(=\dfrac{5\left(x+2\right)-5x+1}{\left(x+2\right)^2}=\dfrac{5x+10-5x+1}{\left(x+2\right)^2}=\dfrac{11}{\left(x+2\right)^2}\)

\(f\left(-1\right)=\dfrac{-5-1}{-1+2}=-6\)

f'(-1)=11/(-1+2)^2=11

Phương trình tiếp tuyến tại M(-1;-6) là:

y=11(x+1)+(-6)=11x+11-6=11x+5

11 tháng 4 2017

Ta có: Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

- Lấy điểm M(x0;y0) ∈ (C).

- Phương trình tiếp tuyến tại điểm M là:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

+ Giao với trục hoành: Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

+ Giao với trục tung: Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

- Ta có:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

- Theo giả thiết tam giác OAB có diện tích bằng 2 nên:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

5 tháng 12 2019

- Ta có : 

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2) 

Lấy điểm  M ( x 0 ;   y 0 )   ∈   C .

+ Phương trình tiếp tuyến tại điểm M là:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

+ Giao với trục hoành:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

+ Giao với trục tung:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

- Ta có:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

- Theo giả thiết tam giác OAB có diện tích bằng 2 nên:

Đề kiểm tra 45 phút Đại số 11 Chương 5 có đáp án (Đề 2)

Chọn D

NV
2 tháng 4 2021

\(y'=\dfrac{-4}{\left(x-1\right)^2}\)

a. \(\dfrac{2x+2}{x-1}=-2\Rightarrow2x+2=-2x+2\Rightarrow x=0\Rightarrow y'\left(0\right)=-4\)

Phương trình tiếp tuyến: \(y=-4\left(x-0\right)-2\)

b. Tiếp tuyến song song đường thẳng đã cho nên có hệ số góc k=-4

\(\Rightarrow\dfrac{-4}{\left(x-1\right)^2}=-4\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=-2\\x=2\Rightarrow y=6\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-4\left(x-0\right)-2\\y=-4\left(x-2\right)+6\end{matrix}\right.\)

c. Gọi \(M\left(x_0;y_0\right)\) là tọa độ tiếp điểm

Pt tiếp tuyến qua M có dạng: \(y=\dfrac{-4}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{2x_0+2}{x_0-1}\)

Do tiếp tuyến qua A nên:

\(3=\dfrac{-4}{\left(x_0-1\right)^2}\left(4-x_0\right)+\dfrac{2x_0+2}{x_0-1}\)

\(\Leftrightarrow x_0^2-10x_0+21=0\Rightarrow\left[{}\begin{matrix}x_0=3\Rightarrow y'\left(3\right)=-1;y\left(3\right)=4\\x_0=7;y'\left(7\right)=-\dfrac{1}{9};y\left(7\right)=\dfrac{8}{3}\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-1\left(x-3\right)+4\\y=-\dfrac{1}{9}\left(x-7\right)+\dfrac{8}{3}\end{matrix}\right.\)

NV
2 tháng 4 2021

d.

Do tiếp tuyến tạo với 2 trục tọa độ 1 tam giác vuông cân nên có hệ số góc bằng 1 hoặc -1

\(\Rightarrow\left[{}\begin{matrix}\dfrac{-4}{\left(x-1\right)^2}=1\left(vô-nghiệm\right)\\\dfrac{-4}{\left(x-1\right)^2}=-1\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)^2=4\Rightarrow\left[{}\begin{matrix}x=3\Rightarrow y=4\\x=-1\Rightarrow y=0\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn:

\(\left[{}\begin{matrix}y=-1\left(x-3\right)+4\\y=-1\left(x+1\right)+0\end{matrix}\right.\)