Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Giả sử ko tồn tại số nào lớn hơn hoặc bằng }\frac{1}{2}\)
\(|\text{ }f\left(0\right)|=|\text{ c}|;|f\left(1\right)|=|a+b+c|;|f\left(-1\right)|=|a-b+c|\)\(\text{khi đó:}-\frac{1}{2}\le c\le\frac{1}{2};-\frac{1}{2}\le a+b+c\le\frac{1}{2};\frac{-1}{2}\le a-b+c\le\frac{1}{2}\)
đến đây đề sai ta chọn a=b=0; c=1/4
\(a,f\left(-2\right)=\dfrac{3}{4}\left(-2\right)=-\dfrac{3}{2}\\ f\left(0\right)=\dfrac{3}{4}\cdot0=0\\ f\left(1\right)=\dfrac{3}{4}\cdot1=\dfrac{3}{4}\\ b,g\left(-2\right)=\dfrac{3}{4}\left(-2\right)+3=-\dfrac{3}{2}+3=\dfrac{3}{2}\\ g\left(0\right)=\dfrac{3}{4}\cdot0+3=3\\ g\left(1\right)=\dfrac{3}{4}\cdot1+3=\dfrac{15}{4}\)
c: Ở hai hàm số trên, nếu lấy biến x cùng một giá trị thì f(x) sẽ nhỏ hơn g(x) 3 đơn vị