Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Phương trình hoành độ giao điểm là:
-x+3=-2x+1
\(\Leftrightarrow x=-2\)
Thay x=-2 vào y=-x+3, ta được;
y=2+3=5
Thay x=-2 và y=5 vào (d), ta được:
\(-2\left(2-m\right)+2m-1=5\)
\(\Leftrightarrow2m-4+2m-1=5\)
\(\Leftrightarrow4m=10\)
hay \(m=\dfrac{5}{2}\)
Cho hàm số y = (2m - 3)x + m - 1
Điều kiện: 2m - 3 ≠ 0 ⇔ m ≠ 3/2
b) Tìm m để đồ thị cắt đường thẳng y = 5x + 3 tại điểm có hoành độ - 1
Với x = - 1, ta có: y = 5. (-1) + 3 ⇒ y = -2
Đường thẳng y=(2m - 3)x + m - 1 cắt đường thẳng y = 5x + 3 tại điểm có hoành độ - 1 khi và chỉ khi đường thẳng y = (2m - 3)x + m - 1 đi qua điểm (-1; -2 )
⇒ -2 = (2m - 3)(-1)+ m - 1 ⇔ -m + 2 = -2 ⇔ m = 4 (TM điều kiện)
Vậy với m = 4 thì đường thẳng y = (2m - 3)x + m - 1 cắt đường thẳng y = 5x + 3 tại điểm có hoành độ - 1
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
2:
a: Khi m=-1 thì hệ phương trình sẽ là:
\(\left\{{}\begin{matrix}2x+y=-3+1=-2\\3x+2y=-2-3=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x+2y=-4\\3x+2y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\2x+y=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1\\y=-2-2x=-2-2=-4\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}2x+y=3m+1\\3x+2y=2m-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x+2y=6m+2\\3x+2y=2m-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x+2y-3x-2y=6m+2-2m+3\\2x+y=3m+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=4m+5\\y=3m+1-2x=3m+1-8m-10=-5m-9\end{matrix}\right.\)
x<1 và y<6
=>\(\left\{{}\begin{matrix}4m+5< 1\\-5m-9< 6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m< -4\\-5m< 15\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< -1\\m>-3\end{matrix}\right.\Leftrightarrow-3< m< -1\)
Bài 1
ĐKXĐ: m ≠ 3
a) Thay x = 0; y = -2 vào hàm số, ta có:
(m - 3).0 - 2m + 2 = -2
⇔ -2m = -2 - 2
⇔ -2m = -4
⇔ m = -4/(-2)
⇔ m = 2 (nhận)
Vậy m = 2 thì đồ thị hàm số cắt trục tung tại điểm có tung độ là -2
b) Để (d) // (d1) thì:
m - 3 = 3m + 1 và -2m + 2 4
*) m - 3 = 3m + 1
⇔ 3m - m = -3 - 1
⇔ 2m = -4
⇔ m = -2 (nhận)
*) -2m + 2 ≠ 4
⇔ -2m ≠ 4 - 2
⇔ -2m ≠ 2
⇔ m ≠ -1
Vậy m = -2 thì (d) // (d1)
c) (d) cắt trục hoành nên:
(m - 3)x - 2m + 2 = 0
⇔ (m - 3)x = 2m - 2
⇔ x = (2m - 2)/(m - 3)
= (2m - 6 + 4)/(m - 3)
= 2 + 4/(m - 3)
x nguyên khi 4 (m - 3)
⇒ m - 3 ∈ Ư(4) = {-4; -2; -1; 1; 2; 4}
⇒ m ∈ {-1; 1; 2; 4; 5; 7}
Vậy m ∈ {-1; 1; 2; 4; 5; 7} thì (d) cắt trục hoành tại điểm có hoành độ là số nguyên
Tọa độ giao điểm của (d) với trục hoành Ox là:
\(\left\{{}\begin{matrix}y=0\\\left(m-3\right)x-2m+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x\left(m-3\right)=2m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m-1}{m-3}\\y=0\end{matrix}\right.\)
Để x nguyên thì \(2m-1⋮m-3\)
=>\(2m-6+5⋮m-3\)
=>\(5⋮m-3\)
=>\(m-3\in\left\{1;-1;5;-5\right\}\)
=>\(m\in\left\{4;2;8;-2\right\}\)
2) Để (d)//(1) thì \(\left\{{}\begin{matrix}2m-1=2\\-5m\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m=3\\m\ne\dfrac{-3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne-\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow m=\dfrac{3}{2}\)
Vậy: Khi \(m=\dfrac{3}{2}\) thì (d)//(1)
Lời giải:
2 đths cắt nhau tại 1 điểm trên trục hoành có hoành độ -1 nghĩa là 2 đths cắt nhau tại $(-1; 0)$
Mà $0\neq 2(-1)-1$ nên điểm $(-1;0)$ không thuộc đths $y=2x-1$
Bạn xem lại đề.
a, - Ta có : Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 6 .
\(\Rightarrow-\dfrac{b}{a}=-\dfrac{3}{a}=6\)
\(\Rightarrow a=-\dfrac{1}{2}\)
b, - Xét phương trình hoành độ giao điểm :\(3x+2=\left(2m-1\right)x+8\)
\(\Leftrightarrow3x+2=2mx-x+8\)
\(\Leftrightarrow3x+2-2mx+m-8=0\)
\(\Leftrightarrow x\left(3-2m\right)=6-m\)
- Để hai đường thẳng cắt được nhau thì : \(3-2m\ne0\)
\(\Leftrightarrow m\ne\dfrac{3}{2}\)
Vậy ...
a) Vì đồ thị hàm số y=ax+3 cắt trục hoành tại điểm có hoành độ bằng 6 nên
Thay x=6 và y=0 vào hàm số y=ax+3, ta được:
\(6a+3=0\)
\(\Leftrightarrow6a=-3\)
hay \(a=-\dfrac{1}{2}\)
Vậy: \(a=-\dfrac{1}{2}\)
b)
Để hàm số y=(2m-1)x+8 là hàm số bậc nhất thì \(2m-1\ne0\)
\(\Leftrightarrow2m\ne1\)
hay \(m\ne\dfrac{1}{2}\)(1)
Để (d) cắt (d') thì \(2m-1\ne3\)
\(\Leftrightarrow2m\ne4\)
hay \(m\ne2\)(2)
Từ (1) và (2) suy ra \(m\notin\left\{\dfrac{1}{2};2\right\}\)
Thay x = -1 vào hs y = 5x + 3 ta được : \(y=-5+3=-2\)
=> hs trên đi qua A(-1;-2)
Mà y = ( 2m - 3 )x + m - 1 cắt y = 5x + 3 tại A(-1;-2)
<=> -2 = 3 - 2m + m - 1 <=> -m = -4 <=> m = 4