K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2023

Ta có: \(y=x^2-2x+1\), có: \(a=1>0;b=-2;c=1\)

+ Tập xác định: \(D=R\) 

+ Nghịch biến trên: \(\left(-\infty;1\right)\); đồng biến trên \(\left(1;+\infty\right)\) 

Bảng biến nhiên:

x     \(-\infty\)                1                \(+\infty\)        
y\(+\infty\)      →       0     →      \(-\infty\)

+ Đồ thị hàm số parabol có:

Đỉnh: \(A\left(1;0\right)\) 

Trục đối xứng là đường thẳng x = 1

Giao điểm với Oy tại \(B\left(0;1\right)\), điểm đối xứng với B qua đường thẳng x = 1 là \(C\left(2;1\right)\)  

Đi qua các điểm \(\left(-1;4\right);\left(3;4\right)\) 

15 tháng 11 2023

22 tháng 12 2021

a: Thay x=3 và y=0 vào (1), ta được:

\(6-3m=0\)

hay m=2

22 tháng 12 2021

a: \(\left\{{}\begin{matrix}x_I=\dfrac{3}{2\cdot1}=\dfrac{3}{2}\\y_I=-\dfrac{\left(-3\right)^2-4\cdot1\cdot\left(-2\right)}{4\cdot1}=-\dfrac{17}{4}\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Trục đối xứng là đường thẳng \(x = 2\)

Đỉnh là \(I\left( {2; - 1} \right)\)

b) Từ đồ thị ta thấy trên khoảng \(\left( { - \infty ;2} \right)\) thì hàm số đi xuống nên hàm số nghịch biến trên \(\left( { - \infty ;2} \right)\).

Trên khoảng \(\left( {2; + \infty } \right)\) thì hàm số đi xuống nên đồng biến trên \(\left( {2; + \infty } \right)\).

c) ) Gọi hàm số là \(y = a{x^2} + bx + c\left( {a \ne 0} \right)\)

Đồ thị hàm số có đỉnh là \(I\left( {2; - 1} \right)\) nên ta có:

\(\left\{ \begin{array}{l} - \frac{b}{{2a}} = 2\\a{.2^2} + b.2 + c =  - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b =  - 4a\\4a + 2b + c =  - 1\end{array} \right.\)

Ta lại có điểm \(\left( {1;0} \right)\) thuộc đồ thị nên ta có: \(a + b + c = 0\)

Vậy ta có hệ sau:

\(\left\{ \begin{array}{l}b =  - 4a\\4a + 2b + c =  - 1\\a + b + c = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}b =  - 4a\\4a + 2.\left( { - 4a} \right) + c =  - 1\\a + \left( { - 4a} \right) + c = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}b =  - 4a\\c - 4a =  - 1\\c - 3a = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}b =  - 4a\\a = 1\\c = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b =  - 4\\a = 1\\c = 3\end{array} \right.\)

Vậy parabol là \(y = {x^2} - 4x + 3\)

16 tháng 4 2019

Cho x= 0 thì y = 1 ta được điểm (0 ;1)

Cho y = 0 thì x = 1 3  ta được điểm  1 3 ; 0

Vậy tọa độ các giao điểm của đồ thị hàm số y = - 3 x + 1  với các trục Ox, Oy lần lượt là:  1 3 ; 0  và (0;1)

20 tháng 12 2019

Ở đây a = 2; b = -2; c = -2. Ta có Δ   =   ( - 1 ) 2   -   4 . 2 . ( - 2 )   =   17

    Trục đối xứng là đường thẳng x = 1/4; đỉnh I(1/4; -17/8) giao với trục tung tại điểm (0; -2).

    Để tìm giao điểm với trục hoành ta giải phương trình

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Vậy các giao điểm với trục hoành là

Giải sách bài tập Toán 10 | Giải sbt Toán 10

26 tháng 6 2019

Trục đối xứng x = -1/4; đỉnh I(-1/4; -17/8) giao với trục tung tại điểm (0;2); giao với trục hoành tại các điểm

Giải sách bài tập Toán 10 | Giải sbt Toán 10

18 tháng 3 2017

y = x2 – 2x có a = 1 ; b = –2 ; c = 0 ; Δ= b2 – 4ac = 4.

+ Đỉnh của Parabol là (1 ; –1).

+ Khi x = 0 thì y = 0. Vậy giao điểm với trục tung là O(0 ; 0).

+ Khi y = 0 thì x2 – 2x = 0. Phương trình có hai nghiệm x = 0 hoặc x = 2.

Vậy Parabol cắt trục hoành tại hai điểm O(0 ; 0) và A(2 ; 0).