Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- a) Thay x=-1;y=3 vào (d) ta có: 3=(m+2)-1-m+6 <=>-m-2-m+6=3 <=>-2m=-1 <=>m=1/2.
Phương trình hoành độ giao điểm là:
\(\dfrac{1}{2}x^2=2x-m+1\)
=>\(\dfrac{1}{2}x^2-2x+m-1=0\)
\(\Delta=\left(-2\right)^2-4\cdot\dfrac{1}{2}\left(m-1\right)\)
\(=4-2\left(m-1\right)=4-2m+2=-2m+6\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)
=>-2m+6>0
=>-2m>-6
=>m<3
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{2}{\dfrac{1}{2}}=4\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m-1}{\dfrac{1}{2}}=2\left(m-1\right)\end{matrix}\right.\)
\(x_1x_2\left(y_1+y_2\right)+48=0\)
=>\(\dfrac{1}{2}\left(x_1^2+x_2^2\right)\cdot x_1x_2+48=0\)
=>\(\dfrac{1}{2}\cdot2\cdot\left(m-1\right)\cdot\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)
=>\(\left(m-1\right)\cdot\left[4^2-2\cdot2\left(m-1\right)\right]+48=0\)
=>\(\left(m-1\right)\left(16-4m+4\right)+48=0\)
=>\(\left(m-1\right)\left(-4m+20\right)+48=0\)
=>\(\left(m-1\right)\left(-m+5\right)+12=0\)
=>\(-m^2+5m+m-5+12=0\)
=>\(-m^2+6m+7=0\)
=>\(m^2-6m-7=0\)
=>(m-7)(m+1)=0
=>\(\left[{}\begin{matrix}m=7\left(loại\right)\\m=-1\left(nhận\right)\end{matrix}\right.\)
a, Thay m = -1/2 vào (d) ta được :
\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)
Hoành độ giao điểm thỏa mãn phương trình
\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)
\(\Delta=4-4\left(-3\right)=4+12=16>0\)
\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)
Vói x = -1 thì \(y=-2+3=1\)
Vớ x = 3 thì \(y=6+3=9\)
Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )
b, mình chưa học
\(y_1+y_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)
Xét phương trình hoành độ giao điểm của (d) và (P) ta có:
\(x^2=2x-2m+2\)
\(\Leftrightarrow x^2-2x+2m-2=0\)
Theo hệ thức Vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)
Từ (1) \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow4-4m+4=8\)
\(\Leftrightarrow m=0\)
vậy..
a: PTHDGĐ là:
x^2-(m-1)x-(m^2+1)=0
a*c=-m^2-1<0
=>(P) luôn cắt (d) tại hai điểm phân biệt nằm về hai phía của trục Oy
b: |x1|+|x2|=2căn 2
=>x1^2+x2^2+2|x1x2|=8
=>(x1+x2)^2-2x1x2+2|x1x2|=8
=>(m-1)^2-2(-m^2+1)+2|-m^2-1|=8
=>(m-1)^2+2(m^2+1)+2(m^2+1)=8
=>m^2-2m+1+4m^2+4=8
=>5m^2-2m-3=0
=>5m^2-5m+3m-3=0
=>(m-1)(5m+3)=0
=>m=1 hoặc m=-3/5
\(\frac{y-y_1}{y_2-y_1}=\frac{ax+b-ax_1-b}{ax_2+b-ax_1-b}=\frac{a\left(x-x_1\right)}{a\left(x_2-x_1\right)}=\frac{x-x_1}{x_2-x_1}\)
xin lỗi mình chưa đọc chỗ parabol ,sửa dòng 8 dưới lên nhé
\(x_1x_2\left(\frac{1}{2}x_1^2+\frac{1}{2}x_2^2\right)+48=0\)
\(\Leftrightarrow\frac{1}{2}x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)
\(\Leftrightarrow\frac{1}{2}\left(2m-2\right)\left[16-2\left(2m-2\right)\right]+48=0\)
\(\Leftrightarrow\left(m-1\right)\left(20-4m\right)+48=0\Leftrightarrow-4m^2+20m-20+4m+48=0\)
\(\Leftrightarrow-4m^2+24m+28=0\Leftrightarrow m^2-6m-7=0\)
Ta có : a - b + c = 1 + 6 - 7 = 0
vậy pt có nghiệm x = -1 ; x = 7
a) vì A(-1; 3) thuộc (d) nên:
3 = 2.(-1) - a + 1
<=> 3 = -2 - a + 1
<=> a = 4
b) Lập phương trình hoành độ giao điểm:
\(2x-a+1=\frac{1}{2}x^2\)
\(\Leftrightarrow\frac{1}{2}x^2-2x+a-1=0\)
ta có: \(y_1=\frac{1}{2}x_1^2\)
\(y_2=\frac{1}{2}x_2^2\)
\(\Leftrightarrow x_1x_2\left(\frac{1}{2}x_1^2+\frac{1}{2}x_2^2\right)+48=0\)
\(\Leftrightarrow x_1x_2\left[\frac{1}{2}\left(x_1^2+x_2^2\right)\right]+48=0\)
\(\Leftrightarrow x_1x_2\left[\frac{1}{2}\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)
Theo định lý viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=\frac{a-1}{2}\end{cases}}\)
\(\Leftrightarrow\left(\frac{a-1}{2}\right)\left[\frac{1}{2}\cdot4^2-2\left(\frac{a-1}{2}\right)\right]+48=0\)
\(\Leftrightarrow10a-a^2+87=0\)
\(\Leftrightarrow\orbr{\begin{cases}x_1=5-4\sqrt{7}\\x_2=5+4\sqrt{7}\end{cases}}\)
Bài 1 :
Đặt \(x^2=t\left(t\ge0\right)\)khi đó phương trình tương đương
\(t+t^2-6=0\)
Ta có : \(\Delta=1+24=25\)
\(t_1=\frac{-1-5}{2}=-3;t_2=\frac{-1+5}{2}=2\)
TH1 : \(x^2=-3\)( vô lí )
TH2 : \(x^2=2\Leftrightarrow x=\pm\sqrt{2}\)
Vậy tập nghiệm của phương trình là S = { \(\pm\sqrt{2}\)}
a) \(x^2+x^4-6=0\)
Đặt \(x^2=t\left(t\ge0\right)\)
⇒ t + \(t^2\) - 6 = 0
⇒ \(t^2+t-6=0\)
⇒ Δ = \(1^2-4.\left(-6\right)\)
= 25
x1 = \(\dfrac{-1-5}{2}\) = - 3 (L)
x2 = \(\dfrac{-1+5}{2}\) = 2 (TM)
Thay \(x^2\) = 2 ⇒ x = \(\pm\sqrt{2}\)
Vậy x = \(\left\{\sqrt{2};-\sqrt{2}\right\}\)
b) (d) : y = 4x +1 - m
(p) : y = \(x^2\)
Xét phương trình hoành độ giao điểm
\(x^2=4x+1-m\)
⇒ \(x^2-4x+m-1=0\)
Δ' = 4 - m + 1
= 5 - m
Để (d) cắt (p) tại hai điểm phân biệt thì Δ' > 0
5 - m > 0
⇒ m < 5
Vậy m < 5 thì (d) cắt (p) tại hai điểm phân biệt
Gọi tọa độ giao điểm của (d) và (p) là (x1;y1) và (x2;y2)
Theo Vi-ét : \(\left\{{}\begin{matrix}S=x_1+x_2=4\\P=x_1x_2=m-1\end{matrix}\right.\)
và y1 = \(x_1^{2_{ }}\) ; y2 = \(x_2^2\)
Khi đó : \(\sqrt{y_1}.\sqrt{y_2}=5\) ⇒ \(\sqrt{y_1.y_2}=5\)
⇔ \(\sqrt{\left(x_1x_2\right)^2}=5\) ⇔ \(|m-1|=5\)
⇔ \(\left[{}\begin{matrix}m-1=5\\m-1=-5\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}m=6\left(L\right)\\m=-4\left(TM\right)\end{matrix}\right.\)
Vậy m = - 4 thì TMĐKBT