Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án B.
d và (C) cắt nhau tại ba điểm phân biệt
Tổng bình phương các phần tử của S là
Đáp án B.
Phương trình đường thẳng d : y = m x + 2 + 2 .
Phương trình hoành độ giao điểm của và d:
2 x + 1 x − 1 = m x + 2 + 2 ⇒ m x 2 + m x − 2 m − 3 = 0 (*).
Để (H) và d cắt nhau tại hai điểm phân biệt thì (*) phải có hai nghiệm phân biệt ⇔ m ≠ 0 Δ > 0 ⇔ m ≠ 0 9 m 2 + 12 > 0 (**). Gọi là hai nghiệm của (*).
Khi đó M = x 1 ; m x 1 + 2 + 2 , N = x 2 ; m x 2 + 2 + 2 .
Hai cạnh của hình chữ nhật tạo bởi bốn đường thẳng như đã cho trong bài là x 2 − x 1 và m x 2 − x 1 . Hình chữ nhật này là hình vuông khi và chỉ khi m x 2 − x 1 = x 2 − x 1 ⇔ m = 1 ⇔ m = ± 1 . Ta thấy chỉ có M=1 thỏa mãn (**).
Vậy chỉ có một giá trị của m thỏa mãn yêu cầu bài toán. Chọn đáp án B.
Đáp án D
Phương pháp:
+) Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x o .
+) Tìm giao điểm của tiếp tuyến với các trục tọa độ.
+) Tính OA, OB, giải phương trình tìm x o → Phương trình tiếp tuyến và kết luận.
Đáp án C
Phương pháp :
+) Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ m – 2
y = f’(m – 2)(x – m +2)+y(m – 2) (d)
+) Xác định các giao điểm của d và các đường tiệm cận => x2;y1
+) Thay vào phương trình x2 + y1 = –5 giải tìm các giá trị của m.
Cách giải: TXĐ: D = R\ {–2}
Ta có
=>Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ m – 2 là:
Đồ thị hàm số y = x - 1 x + 2 có đường TCN y = 1và tiệm cậm đứng x = –2