K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2016

Theo mình:

để hàm số đồng biến, đk cần là y'=0.

a>0 và \(\Delta'< 0\)

nghịch biến thì a<0 

vì denta<0 thì hầm số cùng dấu với a

mình giải được câu a với b

câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb) 

câu d dùng viet

câu e mình chưa chắc lắm ^^

NV
13 tháng 1 2021

\(y'=mx^2-2\left(m-1\right)x+3\left(m-2\right)\)

\(y'\ge0\) ; \(\forall x\ge2\)

\(\Leftrightarrow mx^2-2\left(m-1\right)x+3\left(m-2\right)\ge0\) ; \(\forall x\ge2\)

\(\Leftrightarrow mx^2-2mx+3m\ge6-x\)

\(\Leftrightarrow m\left(x^2-2x+3\right)\ge6-x\)

\(\Leftrightarrow m\ge\dfrac{6-x}{x^2-2x+3}\)

\(\Rightarrow m\ge\max\limits_{x\ge2}\dfrac{6-x}{x^2-2x+3}=\dfrac{4}{3}\)

Vậy \(m\ge\dfrac{4}{3}\)

22 tháng 7 2021

sao ra được 4/3 ạ?

NV
22 tháng 6 2021

\(y=\dfrac{x^2-m^2+2m+1}{x-m}\) đúng không nhỉ?

\(y'=\dfrac{x^2-2mx+m^2-2m-1}{\left(x-m\right)^2}\)

Hàm đồng biến trên các khoảng xác định khi và chỉ khi:

\(x^2-2mx+m^2-2m-1\ge0\) ; \(\forall x\)

\(\Leftrightarrow\Delta'=m^2-\left(m^2-2m-1\right)\le0\)

\(\Leftrightarrow m\le-\dfrac{1}{2}\)

y'=1/3*3x^2(m-1)-(m-1)2x+1

=x^2(m-1)-x(2m-2)+1

Để hàm số đồng biến trên R thì y'>0 với mọi x

=>m-1<>0 và (2m-2)^2-4(m-1)>0

=>m<>1 và 4m^2-8m+4-4m+4>0

=>4m^2-12m+8>0 và m<>1

=>m^2-3m+2>0 và m<>1

=>m>2 hoặc m<1

NV
20 tháng 6 2021

\(y'=x^2-2\left(m-2\right)x+m^2-3m+2\)

a. Hàm đồng biến trên khoảng đã cho khi và chỉ khi:

\(y'\ge0\) ; \(\forall x>3\)

\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x>3\)

Ta có: \(\Delta'=\left(m-2\right)^2-\left(m^2-3m+2\right)=-m+2\)

TH1: \(\Delta'\le0\Leftrightarrow m\ge2\)

TH2: \(\left\{{}\begin{matrix}\Delta'>0\\x_1< x_2\le2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-3m+2-4\left(m-2\right)+4\ge0\\2\left(m-2\right)< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-7m+4\ge0\\m< 4\end{matrix}\right.\) \(\Leftrightarrow m< 2\)

Kết hợp lại ta được hàm đồng biến trên \(\left(2;+\infty\right)\) với mọi m

NV
20 tháng 6 2021

b.

Hàm số đồng biến trên khoảng đã cho khi và chỉ khi:

\(y'\ge0\) ; \(\forall x< 0\)

\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x< 0\)

TH1: \(\Delta'=-m+2\le0\Leftrightarrow m\ge2\)

TH2: \(\left\{{}\begin{matrix}\Delta'>0\\0\le x_1< x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1+x_2=2\left(m-2\right)>0\\x_1x_2=m^2-3m+2\ge0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn

Kết hợp lại ta được: \(m\ge2\)

19 tháng 4 2016

Ta có \(y'=-2x^2+2\left(m+1\right)x+2m\)

Hàm số đồng biến trên khoảng (0;2) \(\Leftrightarrow y'\ge0,x\in\left(0;2\right)\) (*)

Vì y'(x) liên tục tại x=0 và x=2 nên (*) \(\Leftrightarrow y'\ge0,x\in\left[0;2\right]\)

\(\Leftrightarrow-2x^2+2\left(m+1\right)x+2m\ge0,x\in\left[0;2\right]\)

\(\Leftrightarrow m\left(x+1\right)\ge x^2-x,x\in\left[0;2\right]\Leftrightarrow m\ge g\left(x\right),x\in\left[0;2\right]\); (trong đó \(g\left(x\right)=\frac{x^2-x}{x+1}\))

\(\Leftrightarrow m\ge Max_{\left[0;2\right]}g\left(x\right)\)

Xét hàm số \(g\left(x\right)=\frac{x^2-x}{x+1}\) trên đoạn \(\left[0;2\right]\)

\(\Rightarrow g'\left(x\right)=\frac{x^2+2x-1}{\left(x+1\right)^2}\Rightarrow g'\left(x\right)=0\Leftrightarrow x=-1+\sqrt{2},x\in\left[0;2\right]\)

\(g\left(0\right);g\left(2\right)=\frac{2}{3};g\left(-1+\sqrt{2}\right)\Rightarrow Max_{\left(0;+\infty\right)}g\left(x\right)=\frac{2}{3}\) tại x=2

Vậy \(m\ge\frac{2}{3}\) thì hàm số đồng biến trên khoảng (0;2)

19 tháng 4 2016

Ta có : \(y'=-2x^2+2\left(m+1\right)x+2m,\Delta'=m^2+6m+1\)

Suy ra hàm đồng biến trên khoảng (0; 2) \(\Leftrightarrow y'\ge0,x\in\left(0;2\right)\)(*)

Trường hợp 1 : Nếu \(\Delta'\le0\Leftrightarrow m^2+6m+1\le0\Leftrightarrow-3-2\sqrt{2}\le m\le-3+2\sqrt{2}\)

theo định lí về dấu tam thức bậc 2 ta có \(y'\le0,x\in R\) => (*) không thỏa mãn

Trường hợp 2 : Nếu \(\Delta'>0\Leftrightarrow m^2+6m+1>0\Leftrightarrow m\le-3-2\sqrt{2}\) hoặc \(m\ge-3+2\sqrt{2}\) thì (*) đúng

<=> phương trình \(y'=0\) có 2 nghiệm phân biệt \(x_1;x_2\) (\(x_1\)>\(x_2\)) và thỏa mãn \(x_1\le0<2\le x_2\)

\(\Leftrightarrow\begin{cases}\Delta>0\\x_1\le0<2\le x_2\end{cases}\) \(\Leftrightarrow\begin{cases}\left(x_1-2\right)\left(x_2-2\right)\le0\\\Delta>0\\\left(x_1-0\right)\left(x_2-0\right)\le0\end{cases}\)

\(\Leftrightarrow\begin{cases}x_1x_2-2\left(x_1+x_2\right)+4\le0\\\Delta>0\\x_1x_2\le0\end{cases}\)

\(\Leftrightarrow m\ge\frac{2}{3}\)

Kết hợp trường hợp 1 và trường hợp 2 ta có \(m\ge\frac{2}{3}\) thì hàm đồng biến trên khoảng (0;2)

 

NV
25 tháng 8 2021

\(y'=3x^2-2\left(2m+1\right)x+m^2+2m=\left(x-m\right)\left(3x-m-2\right)\)

\(y'=0\Rightarrow\left[{}\begin{matrix}x=m\\x=\dfrac{m+2}{3}\end{matrix}\right.\)

TH1: \(m=\dfrac{m+2}{3}\Rightarrow m=1\) hàm đồng biến trên R (thỏa mãn)

TH2: \(m< \dfrac{m+2}{3}\Rightarrow m< 1\) hàm đồng biến trên khoảng đã cho khi \(\dfrac{m+2}{3}\le0\Rightarrow m\le-2\)

TH3: \(m>\dfrac{m+2}{3}\Rightarrow m>1\) hàm đồng biến trên khoảng đã cho khi \(m\le0\) (ktm)

Vậy \(\left[{}\begin{matrix}m=1\\m\le-2\end{matrix}\right.\)

25 tháng 8 2021

Em chào anh ạ! 

29 tháng 9 2016

TXĐ D=R

\(y'=-x^2+\left(2m+4\right)x-4\)

\(\Delta'=m^2+4m\)

để hàm số đồng biến trên đoạn có độ dài = 2,

 y'=0, hàm số có hai nghiệm phân biệt thỏa:

\(\begin{cases}\Delta'>0\\\left|x_1-x_2\right|=2\end{cases}=\begin{cases}m^2+4m>0\left(1\right)\\\left(x_1+x_2\right)^2-4x_1x_2=4\left(2\right)\end{cases}}\)

 

 

 

ko bỏ được tật ham à ucche

4 tháng 9 2021

ham cái gì 

19 tháng 4 2016

Ta có : \(y'=-x^2+2mx+m-2\Rightarrow\Delta'=m^2+m-2\)

Hàm số đồng biến trên đoạn có độ dài bằng 4 <=> phương trình y' =0 có 2 nghiệm phân biệt \(x_1;x_2\)  và thỏa mãn :

\(\left|x_1-x_2\right|=4\Leftrightarrow\begin{cases}\Delta'>0\\\left|x_1-x_2\right|=4\end{cases}\)

                     \(\Leftrightarrow\begin{cases}m^2+m-2>0\\\left(x_1+x_2\right)^2-4x_1.x_2=16\end{cases}\)

                     \(\Leftrightarrow\begin{cases}m^2+m-2>0\\4m^2+4\left(m-2\right)=16\end{cases}\)

                    \(\Leftrightarrow m=2\) hoặc \(m=-3\)

Kết luận  \(m=2\) hoặc \(m=-3\) thì hàm số đồng biến trên đoạn có độ dài bằng 4