Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Học sinh tự làm.
b) Tiệm cận đứng là đường thẳng x = 3.
Tiệm cận ngang là đường thẳng y = 1.
Do đó, giao điểm của hai đường tiệm cận là I(3; 1). Thực hiện phép biến đổi:
Ta được
Vì Y = 5/X là hàm số lẻ nên đồ thị (C) của hàm số này có tâm đối xứng là gốc tọa độ I của hệ tọa độ IXY.
c) Giả sử M(x0; y0) ∈ (C). Gọi d1 là khoảng cách từ M đến tiệm cận đứng và d2 là khoảng cách từ M đến tiệm cận ngang, ta có:
Có hai điểm thỏa mãn đầu bài, đó là hai điểm có hoành độ x0 = 3 + 5 hoặc x0 = 3 - 5
Chọn A
Phương trình tiếp tuyến tại điểm M là d:
Đồ thị có hai tiệm cận có phương trình lần lượt là d 1 : x = 1; d 2 : y = 2
d cắt d 1 tại điểm
d cắt d 2 tại điểm Q(2a-1;2), d 1 cắt d 2 tại điểm I(1;2)
Ta có
b) Tiệm cận đứng là đường thẳng \(x=3\)
Tiệm cận ngang là đường thẳng \(y=1\)
Xét hàm số:
a) TXĐ: R \ {−3m/2}
+) Nếu m < −8/3, y′ > 0 suy ra hàm số đồng biến trên các khoảng
+) Nếu m > −8/3, y′ < 0 suy ra hàm số nghịch biến trên các khoảng
+) Nếu m = −8/3 thì y = −1/2 khi x ≠ 4
b) Ta có:
nên với mọi m, đường thẳng y = -1/2 là tiệm cận ngang và đi qua
c) Số giao điểm của (Cm) và đường phân giác của góc phần tư thứ nhất là số nghiệm của phương trình:
Ta có:
⇔ 2 x 2 + (3m + 1)x – 4 = 0 ⇔ 2 x 2 + (3m + 1) x – 4 = 0 với x ≠ −3m/2
+) Thay x = −3m/2 vào (*), ta có:
Như vậy, để x = −3m/2 không là nghiệm của phương trình (*) ta phải có m ≠ −8/3.
Ta có: Δ = ( 3 m + 1 ) 2 + 32 > 0, ∀ m. Từ đó suy ra với m ≠−8/3 đường thẳng y = x luôn cắt (Cm) tại hai điểm phân biệt.
d) Ta có:
Trước hết, ta vẽ đồ thị (C) của hàm số
TXĐ: D = R \ {−3/2}.
Vì
với mọi nên hàm số nghịch biến trên các khoảng
Bảng biến thiên:
Tiệm cận đứng x = −3/2
Tiệm cận ngang y = −1/2
Đồ thị (C) đi qua các điểm (−2;−6),(−1;5),(0;4/3),(4;0)
Để vẽ đồ thị (C’) của hàm số , ta giữ nguyên phần đồ thị (C) nằm phía trên trục hoành và lấy đối xứng phần đồ thị (C) nằm phía dưới trục hoành qua trục hoành.
Tiếp tuyến của đồ thị hàm số tại M và N song song với nhau nên hệ số góc của chúng bằng nhau g=hay y ' ( x M ) = y ' ( x N )
y = x + 1 x - 1 = 1 + 2 x - 1 ( x ≠ 1 ) ⇒ y ' = - 2 ( x - 1 ) 2
Gọi M ( x M ; 1 + 2 x M - 1 ) ; M ( x N ; 1 + 2 x N - 1 ) là hai điểm thuộc đồ thị hàm số.
Tiếp tuyến của đồ thị hàm số tại M và N song song với nhau
Gọi I là trung điểm của MN ta có: I (1; 1)
Dễ thấy đồ thị hàm số có TCN là y= 1và tiệm cận đứng x= 1 nên I (1; 1) là giao điểm của hai đường tiệm cận => C đúng.
TCN y= 1 và tiệm cận đứng x= 1 rõ ràng đi qua trung điểm I của đoạn MN=> B, D đúng.
Chọn A.