K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2019

Tiếp tuyến của đồ thị hàm số tại M và N song song với nhau  nên hệ  số góc của chúng bằng nhau g=hay  y ' ( x M ) = y ' ( x N )

y = x + 1 x - 1 = 1 + 2 x - 1 ( x ≠ 1 ) ⇒ y ' = - 2 ( x - 1 ) 2

Gọi M ( x M ;   1 + 2 x M - 1 ) ;   M ( x N ; 1 + 2 x N - 1 )   là hai điểm thuộc đồ thị hàm số.

Tiếp tuyến của đồ thị hàm số tại M và N song song với nhau 

Gọi I là trung điểm của MN ta có: I (1; 1)

Dễ  thấy đồ  thị  hàm số  có TCN là y= 1và tiệm cận đứng x= 1 nên I (1; 1) là giao điểm của hai đường tiệm cận => C đúng.

TCN y= 1 và tiệm cận đứng x= 1 rõ ràng đi qua trung điểm I của đoạn MN=> B, D đúng.

Chọn A.

27 tháng 3 2018

a) Học sinh tự làm.

b) Tiệm cận đứng là đường thẳng x = 3.

Tiệm cận ngang là đường thẳng y = 1.

Do đó, giao điểm của hai đường tiệm cận là I(3; 1). Thực hiện phép biến đổi:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta được

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì Y = 5/X là hàm số lẻ nên đồ thị (C) của hàm số này có tâm đối xứng là gốc tọa độ I của hệ tọa độ IXY.

c) Giả sử M(x0; y0) ∈ (C). Gọi d1 là khoảng cách từ M đến tiệm cận đứng và d2 là khoảng cách từ M đến tiệm cận ngang, ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Có hai điểm thỏa mãn đầu bài, đó là hai điểm có hoành độ x0 = 3 +  5  hoặc x0 = 3 - 5

22 tháng 6 2017

22 tháng 6 2018

27 tháng 10 2017

8 tháng 4 2017

Đáp án B

29 tháng 7 2019

]

22 tháng 7 2019

Chọn A

 Phương trình tiếp tuyến tại điểm M là d: 

Đồ thị có hai tiệm cận có phương trình lần lượt là  d 1 : x = 1;  d 2 : y = 2

d cắt d 1  tại điểm 

d cắt d 2  tại điểm Q(2a-1;2),  d 1  cắt  d 2  tại điểm I(1;2)

Ta có 

23 tháng 5 2017

b) Tiệm cận đứng là đường thẳng \(x=3\)

Tiệm cận ngang là đường thẳng \(y=1\)

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

6 tháng 6 2018

Xét hàm số:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

a) TXĐ: R \ {−3m/2}

Giải sách bài tập Toán 12 | Giải sbt Toán 12

 

 +) Nếu m < −8/3, y′ > 0 suy ra hàm số đồng biến trên các khoảng Giải sách bài tập Toán 12 | Giải sbt Toán 12

    +) Nếu m > −8/3, y′ < 0 suy ra hàm số nghịch biến trên các khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

    +) Nếu m = −8/3 thì y = −1/2 khi x ≠ 4

b) Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên với mọi m, đường thẳng y = -1/2 là tiệm cận ngang và đi qua Giải sách bài tập Toán 12 | Giải sbt Toán 12

c) Số giao điểm của (Cm) và đường phân giác của góc phần tư thứ nhất là số nghiệm của phương trình:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

⇔ 2 x 2  + (3m + 1)x – 4 = 0 ⇔ 2 x 2  + (3m + 1) x – 4 = 0 với x ≠ −3m/2

    +) Thay x = −3m/2 vào (*), ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Như vậy, để x = −3m/2 không là nghiệm của phương trình (*) ta phải có m ≠ −8/3.

Ta có: Δ = ( 3 m + 1 ) 2  + 32 > 0, ∀ m. Từ đó suy ra với m ≠−8/3 đường thẳng y = x luôn cắt (Cm) tại hai điểm phân biệt.

d) Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Trước hết, ta vẽ đồ thị (C) của hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

TXĐ: D = R \ {−3/2}.

Vì Giải sách bài tập Toán 12 | Giải sbt Toán 12

với mọi nên hàm số nghịch biến trên các khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Tiệm cận đứng x = −3/2

Tiệm cận ngang y = −1/2

Đồ thị (C) đi qua các điểm (−2;−6),(−1;5),(0;4/3),(4;0)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Để vẽ đồ thị (C’) của hàm số , ta giữ nguyên phần đồ thị (C) nằm phía trên trục hoành và lấy đối xứng phần đồ thị (C) nằm phía dưới trục hoành qua trục hoành.

Giải sách bài tập Toán 12 | Giải sbt Toán 12