Cho hàm số y =  x + 1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2020

2mx nha bạn

NV
8 tháng 8 2020

1.

Để ĐTHS có 2 tiệm cận thì \(m\ne-3\)

Khi đó:

\(\lim\limits_{x\rightarrow\infty}\frac{mx-3}{x+1}=m\Rightarrow y=m\) là tiệm cận ngang

\(\lim\limits_{x\rightarrow-1}\frac{mx-3}{x+1}=\infty\Rightarrow x=-1\) là tiệm cận đứng

Giao điểm 2 tiệm cận có tọa độ \(A\left(-1;m\right)\)

Để A thuộc \(y=x+3\Leftrightarrow m=-1+3\Rightarrow m=2\)

2.

\(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x-2}}{x^2-4}=0\Rightarrow y=0\) là 1 TCN

\(\lim\limits_{x\rightarrow2}\frac{\sqrt{x-2}}{x^2-4}=\infty\Rightarrow x=2\) là 1 TCĐ

\(x=-2\) ko thuộc TXĐ nên ko phải là tiệm cận

Vậy ĐTHS có 2 tiệm cận

3.

Để ĐTHS có đúng 2 TCĐ \(\Leftrightarrow x^2-mx+5=0\) có 2 nghiệm pb khác 1

\(\Leftrightarrow\left\{{}\begin{matrix}6-m\ne0\\\Delta=m^2-20>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne6\\\left[{}\begin{matrix}m\ge2\sqrt{5}\\m\le-2\sqrt{5}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow m=\left\{5;-5\right\}\)

Đề bài sai hoặc đáp án sai

Câu 1: Cho đường thẳng (d) xác định bởi \(\hept{\begin{cases}y=-1\\x+z=0\end{cases}}\)và hai mặt phẳng (P): \(x+2y+2z+3=0,\)(Q): \(x+2y+2z+7=0\).(Chọn đáp án đúng) Phương trình mặt cầu có tâm thuộc (d) và tiếp xúc với (P), (Q)...
Đọc tiếp

Câu 1: Cho đường thẳng (d) xác định bởi \(\hept{\begin{cases}y=-1\\x+z=0\end{cases}}\)và hai mặt phẳng (P): \(x+2y+2z+3=0,\)(Q): \(x+2y+2z+7=0\).

(Chọn đáp án đúng) Phương trình mặt cầu có tâm thuộc (d) và tiếp xúc với (P), (Q) là:

\(a)\left(x+3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

\(b)\left(x+3\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=\frac{4}{9}\)

\(c)\left(x-3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

\(d)\left(x-3\right)^2+\left(y-1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

Câu 2: Cho mặt cầu (S): \(x^2+y^2+z^2-2x+2y+1=0\)và điểm \(M\left(0;-1;0\right).\)

Phương trình mặt phẳng (P) tiếp xúc với (S) tại M là:

\(a)2x+y-z+1=0.\)                     \(b)x=0.\)            

\(c)-x+y+2z+1=0.\)              \(d)x+y+1=0\)

Câu 3: Trong khai triển \(f\left(x\right)=\frac{1}{256}\left(2x+3\right)^{10}\)thành đa thức, hệ số của x8 là:

\(a)103680.\)            \(b)405.\)             \(c)106380.\)            \(d)504.\)

Câu 4: Tổng các nghiệm của phương trình \(2^{x^2-3}.5^{x^2-3}=0,01.\left(10^{x-1}\right)^3\)là:

\(a)3.\)            \(b)5.\)            \(c)0.\)            \(d)2\sqrt{2}.\)

 

1
21 tháng 6 2019

Lần sau em đăng bài ở học 24 để mọi người giúp đỡ em nhé!

Link đây: Cộng đồng học tập online | Học trực tuyến

1. Gọi I là tâm của mặt cầu cần tìm

Vì I thuộc d

=> I( a; -1; -a)

Mặt cầu tiếp xúc với hai mặt phẳng (p), (Q). nên ta co:

d(I; (P))=d(I;(Q))

<=> \(\frac{\left|a+2\left(-1\right)+2\left(-a\right)+3\right|}{\sqrt{1^2+2^2+2^2}}=\frac{\left|a+2\left(-1\right)+2\left(-a\right)+7\right|}{\sqrt{1^2+2^2+2^2}}\)

\(\Leftrightarrow\frac{\left|-a+1\right|}{3}=\frac{\left|-a+5\right|}{3}\Leftrightarrow a=3\)

=> I(3; -1; -3) ; bán kinh : R=d(I; P)=2/3

=> Phương trình mặt cầu:

\(\left(x-3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

đáp án C.

2. Gọi I là tâm mặt cầu: I(1; -1; 0)

Ta có: Phương trình mặt phẳng (P) tiếp xúc vs mặt Cầu S tại M

=> IM vuông góc vs mặt phẳng (P)

=> \(\overrightarrow{n_p}=\overrightarrow{MI}=\left(1;0;0\right)\)

=> Phương trình mặt phẳng (P) có véc tơ pháp tuyến: \(\overrightarrow{n_p}\)và qua điểm M

1(x-0)+0(y+1)+0(z-0) =0<=> x=0

đáp án B

3.

 \(f\left(x\right)=\dfrac{1}{256}\left(2x+3\right)^{10}=\dfrac{1}{256} \sum \limits_{k=0} ^{10}C_{k}^{10}(2x)^k.3^{10-k}\)

Để có hệ số x^8 thì k=8 khi đó hệ số của x^8 là:

\(\dfrac{1}{256}C_{8}^{10}.2^8.3^{10-8}=405\)

đáp án D

4.

pt <=>  \(\left(2.5\right)^{x^2-3}=10^{-2}.10^{3x-3}\)

\(\Leftrightarrow10^{x^2-3}=10^{3x-5}\)

\(\Leftrightarrow x^2-3=3x-5\Leftrightarrow x^2-3x+5=0\)

=> theo định lí viet tổng các nghiệm bằng 3, tích các nghiệm bằng 5

Đáp án A

Câu 1 : Cho hàm số y = \(mx^4-x^2+1\) . Tập hợp các số thực m để hàm số đã cho có đúng một điểm cực trị là A. \(\left(0;+\infty\right)\) B. \((-\infty;0]\) C. \([0;+\infty)\) D. \(\left(-\infty;0\right)\) Câu 2 : Tập hợp tất cả các giá trị tham số thực m để đồ thị hàm số \(y=x^3+3mx^2+3\left(m^2-1\right)x+m^3\) có hai điểm cực trị nằm về hai phía trục hoành là (a;b) . Khi...
Đọc tiếp

Câu 1 : Cho hàm số y = \(mx^4-x^2+1\) . Tập hợp các số thực m để hàm số đã cho có đúng một điểm cực trị là

A. \(\left(0;+\infty\right)\) B. \((-\infty;0]\) C. \([0;+\infty)\) D. \(\left(-\infty;0\right)\)

Câu 2 : Tập hợp tất cả các giá trị tham số thực m để đồ thị hàm số \(y=x^3+3mx^2+3\left(m^2-1\right)x+m^3\) có hai điểm cực trị nằm về hai phía trục hoành là (a;b) . Khi đó giá trị a + 2b bằng

A. \(\frac{3}{2}\) B. \(\frac{4}{3}\) C. 1 D. \(\frac{2}{3}\)

Câu 3 : Có bao nhiêu giá trị nguyên dương của m để khoảng cách từ gốc tọa độ O đến đường thẳng đi qua 2 điểm cực trị của đồ thị hàm số y = \(x^3-3x+m\) nhỏ hơn hoặc bằng \(\sqrt{5}\)

A. 5 B. 2 C. 11 D. 4

Câu 4 : Gọi m là giá trị nhỏ nhất của hàm số y = \(x-1+\frac{4}{x-1}\) trên khoảng \(\left(1;+\infty\right)\) . Tìm m ?

A. m = 2 B. m = 5 C. m = 3 D. m = 4

Câu 5 : giá trị lớn nhất của hàm số \(y=\sqrt{-x^2+4x}\) trên khoảng (0;3) là :

A. 4 B. 2 C. 0 D. -2

Câu 6 : giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\sqrt{x-2}+\sqrt{4-x}\) lần lượt là M và m . Chọn câu trả lời đúng

A. M = 4 , m = 2 B. M = 2 , m = 0 C. M = 3 , m = 2 D. M = 2 , m = \(\sqrt{2}\)

4
NV
16 tháng 10 2020

1.

Hàm trùng phương có đúng 1 cực trị khi:

TH1: \(a=m=0\)

TH2: \(ab=-m>0\Leftrightarrow m< 0\)

\(\Rightarrow m\le0\)

Đáp án B

NV
16 tháng 10 2020

2.

\(y'=3\left(x^2+2mx+m^2-1\right)=3\left(x+m+1\right)\left(x+m-1\right)\)

\(y'=0\Rightarrow\left[{}\begin{matrix}x=-m+1\\x=-m-1\end{matrix}\right.\)

Hàm số có 2 cực trị nằm về 2 phía trục hoành

\(\Leftrightarrow y'\left(-m+1\right).y'\left(-m-1\right)< 0\)

\(\Leftrightarrow\left(3m-2\right)\left(3m+2\right)< 0\Rightarrow-\frac{2}{3}< m< \frac{2}{3}\)

\(\Rightarrow a+2b=-\frac{2}{3}+2.\frac{2}{3}=\frac{2}{3}\)

NV
13 tháng 8 2020

5.

\(y'=1-\frac{4}{\left(x-3\right)^2}=0\Leftrightarrow\left(x-3\right)^2=4\)

\(\Rightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=1< 3\left(l\right)\end{matrix}\right.\)

BBT:

Chương 1:ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

Từ BBT ta có \(y_{min}=y\left(5\right)=7\)

\(\Rightarrow m=7\)

NV
13 tháng 8 2020

3.

\(y'=-2x^2-6x+m\)

Hàm đã cho nghịch biến trên R khi và chỉ khi \(y'\le0;\forall x\)

\(\Leftrightarrow\Delta'=9+2m\le0\)

\(\Rightarrow m\le-\frac{9}{2}\)

4.

\(y'=x^2-mx-2m-3\)

Hàm đồng biến trên khoảng đã cho khi và chỉ khi \(y'\ge0;\forall x>-2\)

\(\Leftrightarrow x^2-mx-2m-3\ge0\)

\(\Leftrightarrow x^2-3\ge m\left(x+2\right)\Leftrightarrow m\le\frac{x^2-3}{x+2}\)

\(\Leftrightarrow m\le\min\limits_{x>-2}\frac{x^2-3}{x+2}\)

Xét \(g\left(x\right)=\frac{x^2-3}{x+2}\) trên \(\left(-2;+\infty\right)\Rightarrow g'\left(x\right)=\frac{x^2+4x+3}{\left(x+2\right)^2}=0\Rightarrow x=-1\)

\(g\left(-1\right)=-2\Rightarrow m\le-2\)

mk nhầm câu c là 25f(x)

câu d là 24f(x)

mk nhầm nũa câu hỏi là cái f(x+2)-f(x) là bỏ nha

AH
Akai Haruma
Giáo viên
11 tháng 7 2017

Lời giải:

Thiết diện là một tam giác đều cạnh \(a\sqrt{3}\) nên \(2R=\sqrt{3}a\Rightarrow R=\frac{\sqrt{3}a}{2}\)

Do đó diện tích xq của hình nón là:

\(S_{xq}=\pi Rl=\frac{3a^2}{2}\pi\)

Đáp án C

13 tháng 8 2020

kết quả cuối cùng là bn vậy bạn

NV
13 tháng 8 2020

5.

\(y'=4x^3-8x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2}\\x=-\sqrt{2}\left(l\right)\end{matrix}\right.\)

\(y\left(0\right)=-2\) ; \(y\left(\sqrt{2}\right)=-6\) ; \(y\left(\sqrt{3}\right)=-5\)

\(\Rightarrow M=-2\)

lưa ý pt \(x^2=m^2-m+1\)có nghiệm với x phải #0 vì nếu = 0 thì trùng => sai

nhưng nghiệm \(\left(+,-\right)\sqrt{m^2-m+1}\)luôn #0 rồi khỏi lo

\(y'=6x^2-6\left(m+1\right)x+6m\)

ta có y/y'=\(\left(3m-1\right)x+m^3+m^2+m\)

suy ra y= \(\left(3m-1\right)x+m^3+m^2+m\)là pt của dường thẳng đi qua A và B

de-ta \(=9\left(m+1\right)^2-36m\)

y' có 2 \(n_o\)phân biệt khi m#1

hai hoành độ của hai điểm cực trị là :

\(X=\dfrac{-b\left(+,-\right)\sqrt{deta}}{a}=\)

\(\left[{}\begin{matrix}\dfrac{m+3}{2}\\\dfrac{3m-1}{2}\end{matrix}\right.\)<=>y=\(\left[{}\begin{matrix}2m^3+5m^2+10m+3\\2m^3+11m^2+4m+1\end{matrix}\right.\)(tìm y bằng cách thế x vào pt đường thẳng )

khoảng cách giữa hai điểm AB =\(\sqrt{2}\)

ta có pt : \(2=\left(\dfrac{m+3}{2}-\dfrac{3m-1}{2}\right)^2+\left(2m^3+5m^2+10m-3-\left(2m^3+11m^2-4m+1\right)\right)^2\)

lại sai chỗ nào rồi 0 ra nghiệm , cậu tính lại thử , cách giả là như vậy