Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(m+1\right)x\ge-2m-3\)
- Với \(m=-1\) thỏa mãn
- Với \(m>-1\Rightarrow x\ge\dfrac{-2m-3}{m+1}\)
\(\Rightarrow\dfrac{-2m-3}{m+1}\le-3\) \(\Leftrightarrow\dfrac{2m+3}{m+1}-3\ge0\Leftrightarrow\dfrac{-m}{m+1}\ge0\)
\(\Rightarrow-1< m\le0\Rightarrow m=0\)
- Với \(m< -1\Rightarrow x\le\dfrac{-2m-3}{m+1}\Rightarrow\dfrac{-2m-3}{m+1}\ge-1\)
\(\Rightarrow\dfrac{2m+3}{m+1}-1\le0\Leftrightarrow\dfrac{m+2}{m+1}\le0\)
\(\Rightarrow-2\le m< -1\Rightarrow m=-2\)
Vậy \(m=\left\{-2;-1;0\right\}\)
ĐKXĐ
\(mx^4+mx^3+\left(m+1\right)x^2+mx+1\)
\(=\left(mx^4+mx^3+mx^2+mx\right)+\left(x^2+1\right)\)
=\(mx\left(x^3+x^2+x+1\right)+\left(x^2+1\right)\)
\(=mx\left(x+1\right)\left(x^2+1\right)+\left(x^2+1\right)\)
\(=\left(x^2+1\right).\left[mx\left(x+1\right)+1\right]>0\left(\forall x\right)\)
\(=>mx^2+mx+1>0\left(\forall x\right)\)
\(=>PT\hept{\begin{cases}mx^2+mx+1=0\left(zô\right)nghiệm\forall x\\m>0\end{cases}}\)
\(\hept{\begin{cases}\Delta< 0\\m>0\end{cases}=>\hept{\begin{cases}m^2-4m< 0\\m>0\end{cases}=>\hept{\begin{cases}m\left(m-4\right)< 0\\m>0\end{cases}=>0< m< 4}}}\)
=> m có 3 giá trị là 1,2,3 nha
b, \(\left\{{}\begin{matrix}x^2-2x-3\le0\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le3\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)
Yêu cầu bài toán thỏa mãn khi phương trình \(f\left(x\right)=x^2-2mx+m^2-9\ge0\) có nghiệm \(x\in\left[-1;3\right]\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-m^2+9=9>0,\forall m\\-1< m< 3\\f\left(-1\right)=m^2+2m-8\ge0\\f\left(3\right)=m^2-6m\ge0\end{matrix}\right.\)
\(\Leftrightarrow m\in[2;3)\cup(-1;0]\)