K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2019

Chọn C.

Phương pháp: Dựa vào bảng biến thiên để xác định tiệm cận, cực trị, giá trị lớn nhất, giá trị nhỏ nhất.

Cách giải: Dựa vào bảng biến thiên dễ thấy đồ thị hàm số có tiệm cận ngang y = 0 và hai tiệm cận đứng x = 2, x = -2. Vậy (I) sai và (IV) đúng.

20 tháng 9 2019

Phương pháp:

Quan sát bảng biến thiên và tìm điểm cực đại, cực tiểu và các giá trị cực đại, cực tiểu tương ứng.

Cách giải:

Số cách chọn là: 6.4 = 24 (cách). Quan sát bảng biến thiên ta thấy:

Hàm số đạt cực đại tại x = 2 và yCD  =  3 .

Hàm số đạt cực tiểu tại x = 2 và yCT  = 0 .

Vậy yCD  = 3 và yCT  =  0 .

Chọn: B

28 tháng 12 2017

Đáp án B

13 tháng 11 2018

Đáp án A

Hàm số f(x) xác định trên D R
Điểm  x 0
D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b) D sao cho  x 0 (a;b) và f( x 0 )>f(x),x (a,b){ x 0 }.

3 tháng 9 2017

Đáp án A

Hàm số f(x) xác định trên D R
Điểm xo
D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b) D sao cho xo (a;b) và f(xo)>f(x),x (a,b){xo}.

2 tháng 8 2018

Chọn A.

(I) sai f xđ trên R

(II) sai hs có 2 điểm cực trị

(III) ,(IV) đúng

7 tháng 11 2019

 

Hình ảnh trên là một phần đồ thị của y trên tập xác định. Ta thấy rằng hàm số đạt cực đại tại x = 2 nhưng không chắc rằng có còn điểm cực đại nào khác trên những khoảng rộng hơn hay không (I) sai, (III) đúng.

Hàm số không xác định tại x = 1 nên không thể đạt cực tiểu tại điểm này =>(II) sai.

Chọn B

18 tháng 9 2017

Đáp án B

Phương pháp: Từ đồ thị hàm số y = f’(x) lập BBT của đồ thị hàm số y = f(x) và kết luận.

Cách giải: Ta có 

BBT:

Từ BBT ta thấy (I) đúng, (II) sai.

Với  => Hàm số y = f(x+1) nghịch biến trên khoảng (0;1).

=>(III) đúng.

Vậy có hai khẳng định đúng

27 tháng 1 2018

Đáp án C

Phương pháp : Xét từng mệnh đề.

Cách giải:

(I) sai. Ví dụ hàm số  có đồ thị hàm số như sau:

õ ràng 

(II) đúng vì  y ' = 4 a x 3 + 2 b x = 0  luôn có một nghiệm x = 0 nên đồ thị hàm số  y = a x 4 + b x 2 + c   ( a ≠ 0 )  luôn có ít nhất một điểm cực trị

(III) Gọi x 0 là 1 điểm cực trị của hàm số  => Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ  x 0 là:  luôn song song với trục hoành.

Vậy (III) đúng.

8 tháng 2 2019

Chọn B.

Cách 1: Số điểm cực trị của đồ thị hàm số y=|f(x)| bằng số điểm cực trị của đồ thị hàm số y=f(x) cộng với số giao điểm của đồ thị hàm số y=f(x)với trục hoành (không tính điểm cực trị)

Vì đồ thị hàm số y=f(x) có 2 điểm cực trị và cắt trục Ox tại 1 điểm nên đồ thị hàm số y=|f(x)| có 2 + 1 = 3 điểm cực trị

Đáp án: 3 cực trị