Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 4 m 3 + m 2 f 2 x + 5 = f 2 x + 3
Xét hàm và đi đến kết quả
Ta có
Với điều kiện thì phương trình (2) luôn có một nghiệm duy nhất, để phương trình đã cho có 3 nghiệm phân biệt ⇔ (1) có 2 nghiệm phân biệt khác nghiệm của phương trình (2)
Chọn B.
Để phương trình f(cosx) = m có 3 nghiệm x phân biệt thuộc khoảng ( 0 ; 3 π 2 ] thì phương trình f(cosx) = m phải có hai nghiệm cosx phân biệt, trong đó có 1 nghiệm thuộc (-1;0] và một nghiệm thuộc (0;1)
Dựa vào đồ thị, suy ra m ∈ (0;2)
Chọn B.
Chọn đáp án B
Phương pháp
+) Đặt t=cosx, xác định khoảng giá trị của t, khi đó phương trình trở thành f(t)=m.
+) Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y=f(t) và y=m song song với trục hoành.
Cách giải
Đặt t=cosx ta có
Khi đó phương trình trở thành f(t)=m.
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y=f(t) và y=m song song với trục hoành.
Dựa vào đồ thị hàm số y=f(x) ta thấy phương trình f(t)=m có 2 nghiệm phân biệt thuộc [-1;1) khi và chỉ khi mÎ(0;2).
Có
Phương trình này có hai nghiệm
• Với ta cần tìm điều kiện để phương trình này có 4 nghiệm phân biệt thuộc
Với t = -1 phương trình (1) cho đúng một nghiệm x = π ; với t = 0 phương trình cho hai nghiệm
Với mỗi phương trình cho hai nghiệm thuộc
Vậy điều kiện cần tìm là phương trình (1) phải có hai nghiệm phân biệt
Chọn B.
Đáp án C
Với f x > 0 , ∀ x ∈ ℝ . Xét biểu thức f ' x f x = 2 - 2 x *
Lấy nguyên hàm 2 vế (*), ta được ∫ d f x f x = ∫ 2 - 2 x d x
⇔ ∫ d f x f x = - x 2 + 2 x + C ⇔ ln f x = - x 2 + 2 x + C
Mà f(0) =1 suy ra C = lnf(0) = ln1 = 0. Do đó f x = e - x 2 + 2 x
Xét hàm số f x = e - x 2 + 2 x trên - ∞ ; + ∞ , có f ' x = - 2 x + 2 = 0 ⇔ x = 1
Tính giá trị f 1 = e ; lim x → - ∞ f x = 0 ; lim x → - ∞ f x = 0
Suy ra để phương trình f(x) = m có hai nghiệm thực phân biệt ⇔ 0 < m < e .
Chọn đáp án B.