Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Dựa vào hình vẽ, ta thấy rằng
+ Đồ thị hàm số f '(x) cắt Ox tại 3 điểm phân biệt x 1 - 1 ; 0 , x 2 0 ; 1 , x 3 2 ; 3
Và f '(x) đổi dấu từ - → + khi đi qua x 1 , x 3 ⇒ Hàm số có 2 điểm cực tiểu, 1 điểm cực đại
+ Hàm số y = f(x) nghịch biến trên khoảng - 1 ; x 1 đồng biến trên x 1 ; x 2 (1) sai
+ Hàm số y = f(x) nghịch biến trên khoảng x 2 ; x 3 (chứa khoảng (1;2)), đồng biến trên khoảng x 3 ; 5 (chứa khoảng (3;5)) ⇒ 2 ; 3 đúng
Vậy mệnh đề 2,3 đúng và 1, 4 sai.
Chọn đáp án A
Cách vẽ đồ thị hàm số y=|f(x)|: Giữ lại phần đồ thị hàm số y=f(x) ở phía trên trục Ox và lấy đối xứng phần đồ thị của hàm số y=f(x) ở phía dưới trục Ox lên phía trên trục Ox.
Từ đó ta vẽ được đồ thị hàm số y=f(x) như sau
Như vậy đồ thị hàm số y=|f(x)| có 3 điểm cực trị
Chọn A.
(I) sai f xđ trên R
(II) sai hs có 2 điểm cực trị
(III) ,(IV) đúng
g ' ( x ) = f ' ( x ) - 1 ; g ' ( x ) = 0 ⇔ f ' ( x ) = 1
Dựa vào bảng biến thiên của hàm số y = f ' ( x ) ta có
f ' ( x ) = 1 ⇔ [ x = - 1 x = x 0 > 1
Bảng xét dấu g ' ( x )
Vậy hàm số g(x)=f(x)-x có một điểm cực trị.
Chọn đáp án D.
Đáp án A
Phương pháp: Hàm số đạt cực tiểu tại điểm x = x 0 ⇔ y ' x 0 = 0 và qua x 0 thì y' đổi dấu từ âm sáng dương.
Cách giải: Dựa vào BBT ta dễ thấy x = 0 là điểm cực tiểu của hàm số y = f (x ).
Chú ý và sai lầm: Hàm số đạt cực tiểu tại x = 0, rất nhiều học sinh kết luận sai hàm số đạt cực tiểu tại x = 1. Phân biệt điểm cực tiểu và giá trị cực tiểu của hàm số.
Chọn đáp án D.