K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 12 2017

Lời giải:

Ta có:

\(f(x)=-5x\Rightarrow \left\{\begin{matrix} f(x_1)=-5x_1\\ f(x_2)=-5x_2\end{matrix}\right.\)

\(\Rightarrow f(x_1)-f(x_2)=-5x_1-(-5)x_2=-5(x_1-x_2)=5(x_2-x_1)\)

Do \(x_2> x_1\Rightarrow 5(x_2-x_1)>0\Leftrightarrow f(x_1)-f(x_2)>0 \)

\(\Leftrightarrow f(x_1)> f(x_2)\) (đpcm)

b)

\(\left\{\begin{matrix} f(x_1)=-5x_1\\ f(x_2)=-5x_2\rightarrow 4f(x_2)=-20x_2\end{matrix}\right.\)

\(\Rightarrow f(x_1)+4f(x_2)=-5x_1+(-20)x_2=-5x_1-20x_2\) (1)

Lại có:

\(f(x)=-5x\rightarrow f(x_1+4x_2)=-5(x_1+4x_2)=-5x_1-20x_2\) (2)

Từ (1),(2) suy ra \(f(x_1+4x_2)=f(x_1)+4f(x_2)\)

c)

\(f(x)=-5x\Rightarrow -f(x)=-(-5x)=5x\)

\(f(x)=-5x\Rightarrow f(-x)=-5(-x)=5x\)

Do đó: \(-f(x)=f(-x)\)

16 tháng 1 2017

f(x1 - x2) = k.(x1 - x2) (1)

f(x1) - f(x2) = k.x1 - k.x2 = k.(x1 - x2) (2)

Từ (1) và (2) => đpcm

16 tháng 1 2017

cảm ơn bn nha !!

mà b lm có chắc ko?

NV
15 tháng 11 2018

Do x, y tỉ lệ thuận \(\Rightarrow\) đặt \(y=kx\Rightarrow\left\{{}\begin{matrix}y_1=k.x_1=6k\\y_2=k.x_2=-9k\end{matrix}\right.\)

\(y_1-y_2=10\Rightarrow6k-\left(-9k\right)=10\Rightarrow15k=10\Rightarrow k=\dfrac{2}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}y_1=\dfrac{2}{3}.6=4\\y_2=\dfrac{2}{3}.\left(-9\right)=-6\end{matrix}\right.\)

1 tháng 12 2020

Do x và y là hai đại lượng tỉ lệ thuận nên:

\(\frac{x_1}{x_2}=\frac{y_1}{y_2}\)

\(y_1-x_1=\frac{-1}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x_1}{x_2}=\frac{y_1}{y_2}=\frac{y_1-x_1}{y_2-x_2}=\frac{-\frac{1}{4}}{\frac{8}{15}-\frac{4}{5}}=\frac{-\frac{1}{4}}{-\frac{4}{15}}=\frac{15}{16}\)

\(\frac{x_1}{x_2}=\frac{15}{16}\Rightarrow x_1=\frac{15}{16}.x_2=\frac{15}{16}.\frac{4}{5}=\frac{3}{4}\)

\(\frac{y_1}{y_2}=\frac{15}{16}\Rightarrow y_1=\frac{15}{16}.y_2=\frac{15}{16}.\frac{8}{15}=\frac{1}{2}\)

Vậy x1 = \(\frac{3}{4}\); y1 = \(\frac{1}{2}\)

1 tháng 12 2020

em cảm ơn ạ

6 tháng 12 2017

\(x\)\(y\) là 2 đại lượng tỉ lệ thuận nên \(x=yk\Rightarrow x_1=y_1k\Leftrightarrow2=3k\Leftrightarrow k=\dfrac{2}{3}\)

\(\Rightarrow x_2=\dfrac{2}{3}y_2\Leftrightarrow\dfrac{x_2}{2}=\dfrac{y_2}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x_2}{2}=\dfrac{y_2}{3}=\dfrac{x_2+y_2}{2+3}=\dfrac{20}{5}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=2.4=8\\y_2=3.4=12\end{matrix}\right.\)

6 tháng 12 2017

Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{-c.-a.-b}{abc}=\dfrac{-abc}{abc}=-1\)

Với \(a+b+c\ne0\) áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+a+c-b+b+c-a}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{8abc}{abc}=8\)

Vậy....

25 tháng 5 2018

a) Ta có :

f(x1) - f(x2) = -5x1 - ( -5x2 ) = -5 . ( x1 - x2 ) > 0

\(\Rightarrow\)f(x1) > f(x2)

b) f(x1+4x2) = -5 . ( x1 + 4x2 ) = -5x1 + 4 . ( -5x2 ) = f(x1) + 4.f(x2)

c) -f(x) = - ( -5x ) = 5x 

f(-x) = -5 . ( -x ) = 5x

Vậy -f(x) = f(-x)

14 tháng 12 2015

 

a)  x1 < x2 =>  -5x1 > -5 x2  hay f(x1) > f(x2)

b) f(x1 +4x2) = - 5(x1 +4x2)  = -5x1  +4 .( -5x2) = f(x1) +4 f(x2)

c) - f(x) = - ( -5x) = - 5 ( -x)  = f(-x)

14 tháng 12 2015

mk muốn hỏi olm là tại sao câu hỏi của mk đăng lên chưa có ai trả lời mà mk lại k thấy ở trog mục chưa trả lới z

Xin olm giải đáp!