Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Tập xác định của hàm số y=f(x) là D=R Từ đồ thị đã cho ta có: f ' ' x = 0 ⇔ x = - 1 x = 2 .
Bảng biến thiên.
Dựa vào bảng biến thiên của hàm số y=f(x) ta nhận thấy hàm số y=f(x) đồng biến trên khoảng
-
1
;
+
∞
.
Đáp án D.
Đồ thị hàm số y = f(x) có dạng:
Đồ thị hàm số y = |f(x)| có dạng:
→ Hàm số y = |f(x)| có 3 điểm cực trị.
Đáp án D
Phương pháp : Nhận xét : f’(x – 2) = f’(x)
Cách giải : Ta có : f’(x – 2) = (x – 2)’. f’(x) = f’(x) → Đồ thị hàm số y = f’(x) có hình dạng tương tự như trên.
Đồ thị hàm số y = f(x – 2)có 3 điểm cực trị => Đồ thị hàm số y = f(x) cũng có 3 điểm cực trị
Đáp án B
Phương pháp: Lập bảng biến thiên của g(x) và đánh giá số giao điểm của đồ thị hàm số y = g(x) và trục hoành.
Cách giải:
Xét giao điểm của đồ thị hàm sốy = f’(x) và đường thẳng y = -x ta thấy, hai đồ thị cắt nhau tại ba điểm có hoành độ là: -2;2;4 tương ứng với 3 điểm cực trị của y = g(x).
Bảng biến thiên:
Dựa vào bảng biến thiên ta thấy => phương trình g(x) = 0 không có nghiệm
Đáp án B
f'(x) đổi dấu 1 lần, suy ra đồ thị hàm số f(x) có 1 điểm cực trị.
Chọn D
Tại 1 điểm nào đó trên đồ thị mà đồ thị hàm số không có tiếp tuyến, khi đó hàm số không có đạo hàm tại điểm đó.