Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án D.
Phương trình tương đương với: 3 f x - 4 = 1
Vậy phương trình đã cho có tất cả 4 bốn nghiệm
Đáp án D
Phương pháp:
Số nghiệm của phương trình |f(x)| = m bằng số giao điểm của đồ thị hàm số y = |f(x)| và đường thẳng y = m
Cách giải:
Từ đồ thị hàm số y = f(x) ta có đồ thị hàm số y = |f(x)| như hình bên:
Số nghiệm của phương trình |f(x)| = m bằng số giao điểm của đồ thị hàm số y = |f(x)| và đường thẳng y = m
⇒ Để phương trình |f(x)| = m có 4 nghiệm phân biệt thì 1 < m < 3
Đáp án A
(1) là phương trình hoành độ giao điểm của (C) và đường thẳng ( d ) : y = - 4 5
Suy ra: Số nghiệm của phương trình (1) là số giao điểm của đồ thị (C) và đường thẳng (d)
Chọn đáp án D
Đặt t = f x phương trình trở thành f t = 0
+) Phương trình f x = a ∈ ( - 2 ; - 1 ) có 3 nghiệm;
+) Phương trình f x = 0 có 3 nghiệm.
+) Phương trình f x = b ∈ ( 1 ; 2 ) có 3 nghiệm.
Vậy phương trình đã cho có tất cả 9 nghiệm