K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2022

Tập xác định : R

Chiều biến thiên : hàm số đồng biến trên \(\left(-\infty;0\right)\)

hàm số nghịch biến trên \(\left(0;+\infty\right)\)

Lập bảng giá trị để vẽ đồ thị 

TL
4 tháng 2 2022

- Tập xác định : D = R

- Hàm số trên là hàm nghịch biến khi x > 0 và đồng biến khi x < 0

Bảng giá trị :

x     -4       -2       0        2        4

y      -8       -2         0      -2      -8

TL
4 tháng 2 2022

Đồ thị hàm số \(y=\dfrac{-1}{2}x^2\)

Không có mô tả.

Câu 2: 

a) Để đồ thị hàm số \(y=\left(m+1\right)x^2\) đi qua điểm A(1;2) thì

Thay x=1 và y=2 vào hàm số \(y=\left(m+1\right)x^2\), ta được:

m+1=2

hay m=1

Vậy: m=1

a) Để đồ thị hàm số \(y=ax^2\) đi qua điểm A(4;4) thì

Thay x=4 và y=4 vào hàm số \(y=ax^2\), ta được:

\(a\cdot4^2=4\)

\(\Leftrightarrow a\cdot16=4\)

hay \(a=\dfrac{1}{4}\)

8 tháng 2 2021

a, - Thay tọa độ điểm A vào hàm số ta được : \(4^2.a=4\)

\(\Rightarrow a=\dfrac{1}{4}\)

b, Thay a vào hàm số ta được : \(y=\dfrac{1}{4}x^2\)

- Ta có đồ thì của hai hàm số :

c, - Xét phương trình hoành độ giao điểm :\(\dfrac{1}{4}x^2=-\dfrac{1}{2}x\)

\(\Leftrightarrow x^2+2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy hai hàm số trên cắt nhau tại hai điểm : \(\left(0;0\right);\left(-2;1\right)\)