K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2017

Đáp án C

Đồ thị hàm số đi lên trên khoảng (− ∞ ; 3) nên đồng biến trên khoảng đó. Do đó A đúng.

Dựa vào đồ thị ta thấy (P) có đỉnh có tọa độ (3; 4). Do đó B đúng.

(P) cắt trục hoành tại hai điểm phân biệt có hoành độ −1 và 7. Do đó D đúng.

Dùng phương pháp loại trừ thì C là đáp án sai.

26 tháng 10 2021

Vì parabol đi qua \(I\left(-2;1\right)\) nên \(\left\{{}\begin{matrix}\dfrac{b}{2a}=2\\-\dfrac{\Delta}{4a}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a-b=0\\b^2-4ac-4a=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=4a\\16a^2-4ac-4a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4a\\4a-c=1\left(a\ne0\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4a\\4a=1+c\end{matrix}\right.\)

Mà parabol cắt \(y=x-1\) tại 1 điểm trên trục tung nên \(x=0\Leftrightarrow y=1\)

\(\Leftrightarrow c=1\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=2\end{matrix}\right.\)

Vậy parabol là \(y=\dfrac{1}{2}x^2+2x+1\)

NV
8 tháng 3 2023

Từ giả thiết ta có:

\(\left\{{}\begin{matrix}a< 0\\\dfrac{4ab-4}{4a}=4\\-\dfrac{1}{a}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\)

\(\Rightarrow\) (P) cắt Oy tại điểm có tung độ bằng 3

8 tháng 3 2023

Tuyệt vời quá anh Lâm ơi~

yeu

a: Vì (d) đi qua A(3;-4) và (0;2) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}3a+b=-4\\b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=2\end{matrix}\right.\)

b: vì (d)//y=-4x+4 nên a=-4

Vậy:(d): y=-4x+b

Thay x=-2 và y=0 vào (d), ta được:

b+8=0

hay b=-8

AH
Akai Haruma
Giáo viên
2 tháng 12 2021

D sai, vì hệ số góc $a=1>0$, khi $x$ tăng (giảm) thì $y$ tương ứng tăng (giảm) nên hàm đồng biến trên $R$

NV
2 tháng 12 2021

D là khẳng định sai

4 tháng 11 2021

Thay \(x=0;y=3\Leftrightarrow c=3\Leftrightarrow\left(P\right):y=ax^2-x+3\)

Vì (P) có trục đx là \(\dfrac{1}{2}\Leftrightarrow-\dfrac{\left(-1\right)}{a}=\dfrac{1}{2}\Leftrightarrow a=2\)

Vậy \(\left(P\right):y=2x^2-x+3\)

 

4 tháng 11 2021

DẠ CẢM ƠN NHIỀU Ạ !!!

Gọi công thức của hàm số bậc hai là \(y=ax^2+bx+c\)

Trục đối xứng là x=3 nên \(-\dfrac{b}{2a}=3\)

=>b=-2a

Thay x=0 và y=-16 vào (d), ta được:

\(a\cdot0^2+b\cdot0+c=-16\)

=>c=-16

=>\(y=ax^2+bx-16\)

Thay x=-2 và y=0 vào (d), ta được:

\(a\cdot\left(-2\right)^2+b\left(-2\right)-16=0\)

=>4a-2b-16=0

=>\(4a-2\cdot\left(-2a\right)=16\)

=>8a=16

=>a=2

=>b=-2a=-4

Vậy: Công thức cần tìm là \(y=2x^2-4x-16\)

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x^2-4x+1=2x-4\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+5=0\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-5\right)=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left(x,y\right)\in\left\{\left(1;-2\right);\left(5;6\right)\right\}\)

c: Điểm M,N ở đâu vậy bạn?

Sửa đề: cắt trục tung tại điểm có tung độ bằng -3

Thay x=0 và y=-3 vào (P), ta được:

\(a\cdot0^2+b\cdot0+c=-3\)

=>0+0+c=-3

=>c=-3

vậy: (P): \(y=ax^2+bx-3\)

Tọa độ đỉnh là I(-1;-4) nên ta có:

\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=-1\\-\dfrac{b^2-4\cdot a\cdot\left(-3\right)}{4a}=-4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=2a\\\dfrac{b^2+12a}{4a}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2a\\\left(2a\right)^2+12a=16a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=2a\\4a^2-4a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2a\\4a\left(a-1\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=2a\\\left[{}\begin{matrix}a=0\left(loại\right)\\a-1=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

Theo đề, ta có:

-b/2=2 và 0+0+c=6

=>c=6 và b=-4