K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2017

Để hàm số nghịch biến với mọi x > 0 thì a < 0 nên 5m + 2 < 0 ⇔ m < − 2 5

Vậy m < − 2 5  thỏa mãn điều kiện đề bài

Đáp án cần chọn là: A

1 tháng 6 2019

\(\left(m^2-4m+5\right)x^2\)

\(m^2-4m+5=m^2-2\cdot m\cdot2+2^2+1=\left(m-2\right)^2+1>0\)với mọi m

=> \(a>0\)

Do đóhàm số nghịch biến khi x<0 và đồng biến khi x>0

a: \(=3\left(x^2+2x+\dfrac{5}{3}\right)\)

\(=3\left(x^2+2x+1+\dfrac{2}{3}\right)\)

\(=3\left(x+1\right)^2+2>=2\)

Dấu '=' xảy ra khi x=-1

b: Lấy x1<x2<-1 

\(A=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{3x_1^2+6x_1-3x_2^2-6x_2}{x_1-x_2}\)

\(=3\left(x_1+x_2\right)+6\)

Vì x1<-1, x2<-1 thì x1+x2<-2

=>3(x1+x2)+6<0

=>Hàm số nghịch biến khi x<-1

AH
Akai Haruma
Giáo viên
4 tháng 8 2018

Lời giải:

a) Ta thấy:

\(y=3x^2+6x+5=3(x^2+2x+1)+2\)

\(=3(x+1)^2+2\)

\((x+1)^2\ge 0, \forall x\in\mathbb{R}\Rightarrow y\geq 3.0+2=2\)

Vậy GTNN của $y$ là $2$ tại \((x+1)^2=0\Leftrightarrow x=-1\)

b)

Xét \(x_1,x_2\in\mathbb{R}|x_1,x_2>-1\). Giả sử \(x_1>x_2\)

Khi đó:

\(y(x_1)-y(x_2)=3x_1^2+6x_1+5-(3x_2^2+6x_2+5)\)

\(=3(x_1^2-x_2^2)+6(x_1-x_2)\)

\(=3(x_1+x_2)(x_1-x_2)+6(x_1-x_2)\)

\(=3(x_1-x_2)(x_1+x_2+2)\)

\(x_1>x_2>-1\Rightarrow x_1-x_2>0; x_1+x_2+2>0\)

Do đó: \(y(x_1)-y(x_2)=3(x_1-x_2)(x_1+x_2+2)>0\Rightarrow y(x_1)>y(x_2)\)

Với mọi \(x_1>x_2>-1\in\mathbb{R}\) thì \(y(x_1)>y(x_2)\) nên hàm số đồng biến với mọi $x>-1$

Chứng minh nghịch biến hoàn toàn tương tự, ta chỉ cần chỉ ra \(y(x_1)< y(x_2)\) theo cách trên là được.

18 tháng 8 2016

đồng biến thì m+2>0

nghịch biến thì m+2<0

4 tháng 5 2016

a) khi x>0

để đồng biến thì m+2>=0=>m>=-2

b)khi x<0

để nghịch biến thì m+2<0=>m<-2

tự trình bày nha

4 tháng 5 2016

đề là x>0 mà