K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

Số giao điểm của ( C m ) và đường phân giác của góc phần tư thứ nhất là số nghiệm của phương trình:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

⇔ 2 x 2  + (3m + 1)x – 4 = 0 ⇔ 2 x 2  + (3m + 1) x – 4 = 0 với x ≠ −3m/2

    +) Thay x = −3m/2 vào (*), ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Như vậy, để x = −3m/2 không là nghiệm của phương trình (*) ta phải có m  ≠  −8/3.

Ta có: ∆ = 3 m + 1 2  + 32 > 0, ∀ m. Từ đó suy ra với m  ≠ −8/3 đường thẳng y = x luôn cắt ( C m ) tại hai điểm phân biệt.

6 tháng 6 2018

Xét hàm số:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

a) TXĐ: R \ {−3m/2}

Giải sách bài tập Toán 12 | Giải sbt Toán 12

 

 +) Nếu m < −8/3, y′ > 0 suy ra hàm số đồng biến trên các khoảng Giải sách bài tập Toán 12 | Giải sbt Toán 12

    +) Nếu m > −8/3, y′ < 0 suy ra hàm số nghịch biến trên các khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

    +) Nếu m = −8/3 thì y = −1/2 khi x ≠ 4

b) Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên với mọi m, đường thẳng y = -1/2 là tiệm cận ngang và đi qua Giải sách bài tập Toán 12 | Giải sbt Toán 12

c) Số giao điểm của (Cm) và đường phân giác của góc phần tư thứ nhất là số nghiệm của phương trình:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

⇔ 2 x 2  + (3m + 1)x – 4 = 0 ⇔ 2 x 2  + (3m + 1) x – 4 = 0 với x ≠ −3m/2

    +) Thay x = −3m/2 vào (*), ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Như vậy, để x = −3m/2 không là nghiệm của phương trình (*) ta phải có m ≠ −8/3.

Ta có: Δ = ( 3 m + 1 ) 2  + 32 > 0, ∀ m. Từ đó suy ra với m ≠−8/3 đường thẳng y = x luôn cắt (Cm) tại hai điểm phân biệt.

d) Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Trước hết, ta vẽ đồ thị (C) của hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

TXĐ: D = R \ {−3/2}.

Vì Giải sách bài tập Toán 12 | Giải sbt Toán 12

với mọi nên hàm số nghịch biến trên các khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Tiệm cận đứng x = −3/2

Tiệm cận ngang y = −1/2

Đồ thị (C) đi qua các điểm (−2;−6),(−1;5),(0;4/3),(4;0)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Để vẽ đồ thị (C’) của hàm số , ta giữ nguyên phần đồ thị (C) nằm phía trên trục hoành và lấy đối xứng phần đồ thị (C) nằm phía dưới trục hoành qua trục hoành.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

7 tháng 3 2018

a)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) Tịnh tiến (C) song song với trục Ox sang trái 1 đơn vị, ta được đồ thị (C1) của hàm số.

y = f(x) = − ( x + 1 ) 3  + 3(x + 1) + 1 hay f(x) = − ( x + 1 ) 3  + 3x + 4 (C1)

Lấy đối xứng (C1) qua trục Ox, ta được đồ thị (C’) của hàm số y = g(x) =  ( x + 1 ) 3  − 3x – 4


c) Ta có:  ( x + 1 ) 3  = 3x + m (1)

⇔  ( x + 1 ) 3  − 3x – 4 = m – 4

Số nghiệm của phương trình (1) là số giao điểm của hai đường :

y = g(x) =  ( x + 1 ) 3  − 3x – 4 (C’) và y = m – 4 (d1)

Từ đồ thị, ta suy ra:

    +) m > 5 hoặc m < 1: phương trình (1) có một nghiệm.

    +) m = 5 hoặc m = 1 : phương trình (1) có hai nghiệm.

    +) 1 < m < 5 , phương trình (1) có ba nghiệm.

d) Vì (d) vuông góc với đường thẳng:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên ta có hệ số góc bằng 9.

Ta có: g′(x) = 3 ( x + 1 ) 2  – 3

g′(x) = 9 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Có hai tiếp tuyến phải tìm là:

y – 1 = 9(x – 1) ⇔ y = 9x – 8;

y + 3 = 9(x + 3) ⇔ y = 9x + 24.

24 tháng 10 2017

+ Ta có  y ' = 3 x + 1 2

+ Gọi  M x 0 ; 2 x 0 - 1 x 0 + 1 ∈ C ,   x 0 ≠ - 1 .

Phương trình tiếp tuyến tại M  là

+ Dấu  xảy ra khi và chỉ khi

Tung độ này gần với giá trị e nhất trong các đáp án.

Chọn C.

19 tháng 6 2017

Đáp án A

Gọi  là điểm cố định cần tìm.

Ta có 

 

.

 

 

Lại có 

Phương trình tiếp tuyến của  có dạng

 

 hay

 

.

Đường phân giác góc phần tư thứ nhất có phương trình d: y = x.

Vì ∆  vuông góc với d nên ta có .

15 tháng 4 2022

NGUUUUUUUU

3 tháng 3 2019

Phương pháp:

+) Tìm điều kiện để phương trình hoành độ giao điểm có 3 nghiệm phân biệt.

+) Sử dụng công thức tính diện tích tam giác 

 

+) Sử dụng công thức tính độ dài  

+) Áp dụng định lí Vi-ét tìm m

Chọn C.