Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để hàm số là hàm bậc nhất thì 3 - m 0
m 3
b) Để hàm số là nghịch biến thì 3 - m < 0
m > 3
c) Thay tọa độ điểm A(2; -3) vào hàm số, ta được:
(3 - m).2 + 2 = -3
6 - 2m + 2 = -3
8 - 2m = -3
2m = 11
m = 11/2 (nhận)
Vậy m = 11/2 thì đồ thị hàm số đi qua A(2; -3)
(Sửa theo yêu cầu rồi nhé em!)
d) Thay tọa độ B(-1; -5) vào hàm số, ta được:
(2 - m).(-1) + 2 = -5
-2 + m + 2 = -5
m = -5 (nhận)
Vậy m = -5 thì đồ thị hàm số đi qua B(-1; -5)
Thay x = 2 ; y = − 5 vào y = 5 - m 2 x − 2 m – 1 ta được
− 5 = 5 - m 2 . 2 − 2 m – 1 ⇔ − 3 m + 4 = − 5 ⇔ − 3 m = − 9 ⇔ m = 3
Đáp án cần chọn là: B
b: Để hàm số đồng biến thì 2-m>0
=>m<2
a: Khi m=1 thì (1): y=x+2
Tham khảo
Bài 1:
Để hàm số y=(2-m)x-2 là hàm số bậc nhất thì 2-m<>0
=>m<>2
a=2-m
b=-2
Bài 2:
a: Để hàm số y=(m-5)x+1 đồng biến trên R thì m-5>0
=>m>5
b: Để hàm số y=(m-5)x+1 nghịch biến trên R thì m-5<0
=>m<5
Bài 3:
a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}3-m=2\\2\ne m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=1\\m\ne2\end{matrix}\right.\Leftrightarrow m=1\)
b: Để (d1) cắt (d2) thì \(3-m\ne2\)
=>\(m\ne1\)
c: Để (d1) cắt (d2) tại một điểm trên trục tung thì
\(\left\{{}\begin{matrix}3-m\ne2\\m=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne1\\m=2\end{matrix}\right.\)
=>m=2
a: Thay x=1 và y=-1 vào (d), ta được:
\(\left(m-2\right)\cdot1+m+1=-1\)
=>m-2+m+1=-1
=>2m-1=-1
=>2m=0
=>m=0
b: Thay y=0 vào y=x+2, ta được:
x+2=0
=>x=-2
Thay x=-2 và y=0 vào y=(m-2)x+m+1, ta được:
-2(m-2)+m+1=0
=>-2m+4+m+1=0
=>5-m=0
=>m=5
Thay x = − 1 ; y = 2 v à o y = ( 3 m – 2 ) x + 5 m t a đ ư ợ c 2 = ( 3 m – 2 ) . ( − 1 ) + 5 m
⇔ 2 m = 0 ⇔ m = 0
Đáp án cần chọn là: A