Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=-3x^2-6mx+6m=3\left(-x^2-2mx+2m\right)\)
Đặt \(f\left(x\right)=-x^2-2mx+2m\)
a. \(y'=0\) có 2 nghiệm \(x_1\le x_2< 1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2+2m\ge0\\-f\left(1\right)=1>0\\\dfrac{x_1+x_2}{2}=-2m< 1\end{matrix}\right.\) \(\Rightarrow m\le-2\)
b. \(y'=0\) có 2 nghiệm cùng dấu
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2+2m\ge0\\x_1x_2=-2m>0\\\end{matrix}\right.\) \(\Rightarrow m\le-2\)
c. \(\Delta'=m^2+2m>0\Rightarrow\left\{{}\begin{matrix}m>0\\m< -2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1-x_2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2m+1}{2}\\x_2=\dfrac{-2m-1}{2}\end{matrix}\right.\)
\(x_1x_2=-2m\Rightarrow\left(\dfrac{-2m+1}{2}\right)\left(\dfrac{-2m-1}{2}\right)=-2m\)
\(\Leftrightarrow4m^2-1=-8m\Rightarrow4m^2+8m-1=0\Rightarrow...\)
d.
\(y'< 0\) ;\(\forall x\in R\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-1< 0\\\Delta'=m^2+2m< 0\end{matrix}\right.\)
\(\Leftrightarrow-2< m< 0\)
e.
\(y'< 0\) ; \(\forall x< 0\)
\(\Leftrightarrow-x^2-2mx+2m< 0\) ;\(\forall x< 0\)
TH1: \(\Delta'=m^2+2m< 0\Leftrightarrow-2< m< 0\)
TH2: \(\left\{{}\begin{matrix}\Delta'\ge0\\0< x_1\le x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+2m\ge0\\x_1+x_2=-2m>0\\x_1x_2=-2m>0\end{matrix}\right.\) \(\Rightarrow m\le-2\)
\(y=x^2-mx+m-1\)
\(\Delta\ge0\Leftrightarrow m^2-4\left(m-1\right)\ge0\Leftrightarrow m^2-4m+4\ge0\left(luôn-đúng\right)\)
\(vi-ét\Rightarrow\left\{{}\begin{matrix}x1+x2=m\\x1x2=m-1\end{matrix}\right.\)
\(P=\dfrac{2x1x2+3}{x1^2+x2^2+2x1x2+2}=\dfrac{2m-2+3}{\left(x1+x2\right)^2+2}=\dfrac{2m+1}{m^2+2}\)
\(\Leftrightarrow P\left(m^2+2\right)=2m+1\)
\(\Leftrightarrow Pm^2-2m+2P-1=0\)
\(TH1:P=0\Rightarrow-2m-1=0\Leftrightarrow m=-\dfrac{1}{2}\Rightarrow maxP=0\)
\(TH2:P\ne0\Rightarrow\Delta\ge0\Leftrightarrow4-4P\left(2P-1\right)\ge0\)
\(\Leftrightarrow-8P^2+4P+4\ge0\Leftrightarrow-\dfrac{1}{2}\le P\le1\Rightarrow maxP=1\)
\(\Rightarrow maxP=1\Leftrightarrow m=1\)
Chọn A.
Ta có: y’ = 3x2 – 4x + 2.
Tiếp tuyến tại M, N của (C) vuông góc với đường thẳng y = -x + 2017. Nên tiếp tuyến tại M và N có hệ số góc là 1
Hoành độ x1, x2 của các điểm M, N là nghiệm của phương trình 3x2 – 4x + 2 = 1.
Suy ra x1 + x2 = 4/3 ( hệ thức Vi-et).
Điều kiện: \(x\ne1\)
a) Xét phương trình: \(\frac{x^2-2mx+3m-2}{x-1}=0\Leftrightarrow x^2-2mx+3m-2=0\)\(\left(x-1\ne0\right)\)
Pt có hai nghiệm phân biệt \(\Leftrightarrow\Delta'>0\Leftrightarrow m^2-3m+2>0\Leftrightarrow\orbr{\begin{cases}m>2\\m< 1\end{cases}}\)
Khi đó \(\hept{\begin{cases}x_1=m-\sqrt{m^2-3m+2}\\x_2=m+\sqrt{m^2-3m+2}\end{cases}}\)
+) \(x_1,x_2\ne1\Leftrightarrow\hept{\begin{cases}m-\sqrt{m^2-3m+2}\ne1\\m+\sqrt{m^2-3m+2}\ne1\end{cases}\Leftrightarrow m\ne1}\)
+) Tiếp tuyến của đồ thị tại hai giao điểm với trục Ox vuông góc với nhau
\(\Leftrightarrow\hept{\begin{cases}y'\left(x_1\right)=-1\left(1\right)\\y'\left(x_2\right)=1\left(2\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow\frac{\left(2x_1-2m\right)\left(x_1-1\right)-\left(x_1^2-2mx_1+3m-2\right)}{\left(x_1-1\right)^2}=-1\)
\(\Leftrightarrow\frac{m-1}{\left(x_1-1\right)^2}=2\Rightarrow m-1=2\left(m-\sqrt{m^2-3m+2}-1\right)^2\)
\(\Leftrightarrow\left(m-1\right)\left[1-2\left(2m-3-2\sqrt{m^2-3m+2}\right)\right]=0\)
\(\Leftrightarrow4\sqrt{m^2-3m+2}=4m-7\Leftrightarrow\hept{\begin{cases}m\ge\frac{7}{4}\\m=\frac{17}{8}\end{cases}}\Leftrightarrow m=\frac{17}{8}\)(t/m m>2 v m<1)
Giải (2) cho ra \(m=1\)(loại). Vậy m cần tìm là \(m=\frac{17}{8}.\)
\(y'=\dfrac{\left(2x-m\right)\left(x^2+1\right)-2x\left(x^2-mx+m\right)}{\left(x^2+1\right)^2}=\dfrac{2x-mx^2-m+2mx^2-2mx}{\left(x^2+1\right)^2}=\dfrac{mx^2+2\left(1-m\right)x-m}{\left(x^2+1\right)^2}\)
\(y'=0\Leftrightarrow mx^2+2\left(1-m\right)x-m=0\)
Xet \(m=0\) ko thoa man pt
Xet \(m\ne0\)
\(\left\{{}\begin{matrix}\Delta'>0\\\dfrac{2\left(m-1\right)}{m}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(1-m\right)^2+m^2>0\left(ld\right)\\m=-2\end{matrix}\right.\Rightarrow m=-2\)
\(y=\dfrac{1}{3}\left(m-1\right)x^3-\left(m-1\right)x^2+\left(m+3\right)x-2\)
\(y'=\)\(x^2\left(m-1\right)-2x\left(m-1\right)+m+3\)
a)\(y'=0\)\(\Leftrightarrow x^2\left(m-1\right)-2x\left(m-1\right)+m+3=0\)
Xét m=1 => pt tt: 3=0 (vô lí)
=> \(m\ne1\)
Để y'=0 có hai nghiệm pb cùng dấu
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\x_1x_2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-16m+16>0\\\dfrac{m+3}{m-1}>0\end{matrix}\right.\)\(\Rightarrow m< -3\)
b)y'=0 có hai nghiệm \(\Leftrightarrow\Delta\ge0\) \(\Leftrightarrow m\le-3\)
Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{m-1}=2\\x_1x_2=\dfrac{m+3}{m-1}\end{matrix}\right.\)
Có x12+x22=4
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow\)\(4-\dfrac{2\left(m+3\right)}{m-1}=4\)
\(\Leftrightarrow m=-3\) (tm)
Vậy m=-3
(đúng không ạ?)