K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017

Chọn B

[Phương pháp tự luận]

Ta có  y ' = 6 x 2 - 18 x + 12

A ( 1 ; 5 + m )   v à   B ( 2 ; 4 + m )  là hai điểm cực trị của đồ thị hàm số

Chu vi của ∆ O A B  là

Sử dụng tính chất  u + v ≥ u + v

Từ đó ta có :

Dấu bằng xảy ra khi và chỉ khi u , v cùng hướng

Vậy chu vi  ∆ O A B  nhỏ nhất bằng  ( 10 + 2 ) khi  m = - 14 3

4 tháng 5 2017

+ Đạo hàm y’ = 6x2 – 18x+ 12

+ Tọa độ  hai điểm cực trị của đồ thị hàm số là A( 1; 5+m) và B( 2; 4+ m) 

O ; A và B không thẳng hàng nên – 4-m≠ 2 hay m≠ - 6

Chu vi của tam  giác OAB là:

 

Dấu bằng xảy ra khi và chỉ khi  cùng hướng .

Vậy chu vi tam giác OAB  nhỏ nhất bằng (√10 + √2)  khi m= -14/ 3.

Chọn C.

23 tháng 4 2016

a) Xét hàm số \(y=ax^4+bx^2+c\)

Ta có \(y'=4ax^3+2bx=2x\left(2ax^2+b\right)\)

         \(y'=0\Leftrightarrow x=0\) hoặc \(2ax^2+b=0\left(1\right)\)

Đồ thị  hàm số có 3 cực trị phân biệt khi và chỉ khi \(y'=0\) có 3 nghiệm phân biệt hay phương trình (1) có 2 nghiệm phân biệt khác 0 \(\Leftrightarrow ab< 0\) (*)

Với điều kiện (*) thì đồ  thị có 3 điểm cực trị là :

\(A\left(0;c\right);B\left(-\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right);C\left(\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right)\)

Ta có \(AB=AC=\sqrt{\frac{b^2-8ab}{16a^2}};BC=\sqrt{-\frac{2b}{a}}\) nên tam giác ABC vuông khi và chỉ khi vuông tại A.

Khi đó \(BC^2=2AB^2\Leftrightarrow b^3+8a=0\)

Do đó yêu cầu bài toán\(\Leftrightarrow\begin{cases}ab< 0\\b^3+8a=0\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\-8\left(m+1\right)^3+8=0\end{cases}\)\(\Leftrightarrow m=0\)

 

b) Ta có yêu cầu bài toán  \(\Leftrightarrow\begin{cases}ab< 0\\OA=BC\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\m^2-4\left(m+1\right)=0\end{cases}\)

                                                           \(\Leftrightarrow m=2\pm2\sqrt{2}\)

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Lời giải:
$y'=3x^2-6mx+3(m^2-1)=0$

$\Leftrightarrow x^2-2mx+m^2-1=0$

$\Leftrightarrow x=m+1$ hoặc $x=m-1$

Với $x=m+1$ thì $y=-2m-2$. Ta có điểm cực trị $(m+1, -2m-2)$

Với $x=m-1$ thì $y=2-2m$. Ta có điểm cực trị $m-1, 2-2m$

$f''(m+1)=6>0$ nên $A(m+1, -2m-2)$ là điểm cực tiểu

$f''(m-1)=-6< 0$ nên $B(m-1,2-2m)$ là điểm cực đại 

$BO=\sqrt{2}AO$

$\Leftrightarrow BO^2=2AO^2$

$\Leftrightarrow (m-1)^2+(2-2m)^2=2(m+1)^2+2(-2m-2)^2$

$\Leftrightarrow m=-3\pm 2\sqrt{2}$

 

3 tháng 10 2023

`y'=3x^2+4mx=0<=>[(x=0),(x=-4/3m):}`    `(m ne 0)`

                                       `=>[(y=-m),(y=32/27 m^3-m):}`

          `=>A(0;-m),B(-4/3m;32/27 m^3-m)`

Để `\triangle OAB` vuong tại `O`

  `=>\vec{OA}.\vec{OB}=0`

`<=>(0;-m).(-4/3m;32/27 m^3 -m)=0`

`<=>0.(-4/3m)-m(32/27 m^3-m)=0`

`<=>m^2(32/27m^2 -1)=0`

`<=>[(m=0(L)),(m=+-[3\sqrt{6}]/8 (t//m)):}`

Vậy `m=+-[3\sqrt{6}]/8`.

26 tháng 1 2019

Chọn A

19 tháng 1 2019

Chọn C

Ta có  y ' = 3 x 2 - 6 m x + 3 ( m 2 - 1 )

Hàm số (1) có cực trị thì PT y ' = 0  có 2 nghiệm phân biệt

⇔ x 2 - 2 m x + m 2 - 1 = 0  có 2 nhiệm phân biệt

Khi đó, điểm cực đại A ( m - 1 ; 2 - 2 m ) và điểm cực tiểu  B ( m + 1 ; - 2 m )

Ta có  O A = 2 O B ⇔ m 2 + 6 m + 1 = 0

 

 

22 tháng 7 2018

9 tháng 11 2017