Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}3x-1=-x+2\\y=-x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=2-\dfrac{3}{4}=\dfrac{5}{4}\end{matrix}\right.\)
c1:
Vì (d')//d nên pt đường thẳng của (d') là:y=-3x+b
đường thẳng (d') có tung độ gốc =2 => b=2
Vậy : pt đường thẳng của (d') là:y=-3x+2
a, Hàm số \(\left(d_1\right)y=-2x+3\)
Cho \(y=0=>x=\dfrac{3}{2}\) ta được điểm \(\left(\dfrac{3}{2};0\right)\)
Cho \(x=0=>y=3\) ta được điểm \(\left(0;3\right)\)
Vẽ đồ thị hàm số \(\left(d_1\right)\) đi qua hai điểm trên
hàm số \(\left(d_2\right)y=x-1\)
Cho \(y=0=>x=1\) ta được điểm \(\left(1;0\right)\)
Cho \(x=0=>y=-1\) ta được điểm \(\left(0;-1\right)\)
Vẽ đồ thị hàm số \(\left(d_2\right)\) đi qua hai điểm trên
# Bạn có thể tự vẽ nhé !!
b, Tọa độ giao điểm \(\left(d_1\right);\left(d_2\right)\) là nghiệm của pt
\(-2x+3=x-1\\ =>-3x=-4\\ =>x=\dfrac{4}{3}\)
Thay \(x=\dfrac{4}{3}\) vào \(\left(d_2\right)\)
\(\Rightarrow y=\dfrac{4}{3}-1=\dfrac{1}{3}\)
Vậy tọa độ giao điểm là : \(\left(\dfrac{4}{3};\dfrac{1}{3}\right)\)
c, Giả sử \(\left(d_3\right)y=ax+b\)
\(\left(d_3\right)\) đi qua \(A\left(-2;1\right)\) và song song với đường thẳng \(\left(d_1\right)y=-2x+3\)
\(\Rightarrow\left\{{}\begin{matrix}4a+b=1\\a=-2;b\ne3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4.\left(-2\right)+b=1\\a=-2;b\ne3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=9\left(t/m\right)\\a=-2\end{matrix}\right.\)
Vậy \(d_3:y=-2x+9\)
#Rinz
b. PTHDGD: \(\dfrac{5}{2}x-4=3x-1\Leftrightarrow\dfrac{1}{2}x=-3\Leftrightarrow x=-6\Leftrightarrow y=-17\Leftrightarrow A\left(-6;-17\right)\)
Vậy \(A\left(-6;-17\right)\) là tọa độ giao điểm
c. Gọi \(\left(d_1\right):y=ax+b\left(a\ne0\right)\) là đt cần tìm
\(\left(d_1\right)//\left(d\right);A\left(-2;3\right)\in\left(d_1\right)\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{2}\\b\ne-4\\-2a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{2}\\b=8\end{matrix}\right.\)
Vậy \(\left(d_1\right):y=\dfrac{5}{2}x+8\)
Chúc bạn học tốt!
a, tự vẽ nha
b, xét pt hđ gđ của P và d ta đc
x2 = x +2
x2 - x - 2= 0
ta có a -b +c=1 +1 -2=0
pt có 2 nghiệm pb x1 = -1 \(\Rightarrow\)y1 = 1
x2 = 2\(\Rightarrow\)y2 = 4
P cắt d tại 2 điểm pb (-1;1) và (2 ;4)
c,A(2;3) \(\in\)d1
thay x=2, y=3 vào d1 ta đc
3= 2a +b (1)
B(-1;2) \(\in\)d1
thay x=-1, y=2 vào d1 ta đc
2 = -a +b (2)
từ 1 và 2 \(\Rightarrow\)hpt \(\hept{\begin{cases}2a+b=3\\-a+b=2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}3a=1\\-a+b=2\end{cases}}\)\(\hept{\begin{cases}a=\frac{1}{3}\\-\frac{1}{3}+b=2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=\frac{1}{3}\\b=\frac{7}{3}\end{cases}}\)
(d1) y= 1/3x +7/3
#mã mã#
Bạn tham khảo link này nha:
https://olm.vn/hoi-dap/detail/220087948444.html
Chúc bạn học tốt
Forever
a) bạn tự vẽ nha
b) hoành độ giao điểm là nghiệm của pt: \(\frac{1}{2}x^2=4x-8\Leftrightarrow x^2-8x+16=0\Leftrightarrow\left(x-4\right)^2=0\Rightarrow x=4\Rightarrow y=\frac{16}{2}=8\)
=> tọa độ giao điểm là (4;8)
c, gọi pt đt cần tìm là (D") có dạng: y=ax+b
vì (D") // (D) => a=4 => y=4x+b
vì N thuộc (D") => tha x=-1, y=-2 vào ta có: -2=-4+b <=> b=2
=> pt đt (D") cần tìm là: y=4x+2
Phần b mk chưa học nên chịu :v
a, Phương trình đường thẳng (d) là: y = ax + b
Vì đường thẳng (d) song song với đường thẳng y = 3x + 1 nên
\(\Rightarrow\) \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=3\\b\ne1\end{matrix}\right.\)
Với a = 3 ta được pt đường thẳng (d): y = 3x + b
Vì đường thẳng (d) đi qua điểm A(3;7) nên thay x = 3; y = 7 ta được:
7 = 3.3 + b
\(\Leftrightarrow\) b = -2 (TM)
Vậy phương trình đường thẳng (d) là: y = 3x - 2
Chúc bn học tốt!