K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 4 2021

Đề là \(f\left(x\right)=\dfrac{1}{2}sin2x-cosx-x+2015\) đúng không nhỉ?

\(f'\left(x\right)=cos2x+sinx-1\)

\(f'\left(x\right)=0\Leftrightarrow cos2x+sinx-1=0\)

\(\Leftrightarrow1-2sin^2x+sinx-1=0\)

\(\Leftrightarrow sinx\left(1-2sinx\right)=0\Rightarrow\left[{}\begin{matrix}sinx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

NV
10 tháng 4 2021

1. Áp dụng quy tắc L'Hopital

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x+1}-1}{f\left(0\right)-f\left(x\right)}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{2\sqrt{x+1}}}{-f'\left(0\right)}=-\dfrac{1}{6}\)

2.

\(g'\left(x\right)=2x.f'\left(\sqrt{x^2+4}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\f'\left(\sqrt{x^2+4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x^2+4}=1\\\sqrt{x^2+4}=-2\end{matrix}\right.\) 

2 pt cuối đều vô nghiệm nên \(g'\left(x\right)=0\) có đúng 1 nghiệm

31 tháng 7 2021

`f'(x) = x^2 - 4x+m`

`f'(x) >=0 <=>x^2-4x+m>=0`

`<=> \Delta' >=0`

`<=> 2^2-1.m>=0`

`<=> m<=4`

Vậy....

NV
20 tháng 12 2020

\(f'\left(x\right)=cosx\)

\(f''\left(x\right)=-sinx\)

\(f^{\left(3\right)}\left(x\right)=-cosx\)

\(f^{\left(4\right)}\left(x\right)=sinx\)

Từ đó ta thấy được:

\(f^{\left(4k\right)}\left(x\right)=sinx\)

\(f^{\left(4k+1\right)}\left(x\right)=cosx\)

\(f^{\left(4k+2\right)}\left(x\right)=-sinx\)

\(f^{\left(4k+3\right)}\left(x\right)=-cosx\)

\(\Rightarrow f^{\left(4k\right)}\left(x\right)+f^{\left(4k+1\right)}\left(x\right)+f^{\left(4k+2\right)}\left(x\right)+f^{\left(4k+3\right)}\left(x\right)=0\)

\(\Rightarrow S=f^{\left(2017\right)}\left(x\right)+f^{\left(2018\right)}\left(x\right)+f^{\left(2019\right)}\left(x\right)\)

(Toàn bộ phần tổng đằng trước nhóm thành các cụm 4 số và triệt tiêu)

\(S=f^{\left(4.504+1\right)}\left(x\right)+f^{\left(4.504+2\right)}\left(x\right)+f^{\left(4.504+3\right)}\left(x\right)\)

\(=cosx-sinx-cosx=-cosx\)

21 tháng 12 2020

undefined

8 tháng 4 2021

1/ \(y'=\dfrac{\left(\sqrt{x+1}\right)'x-x'\sqrt{x+1}}{x^2}=\dfrac{\dfrac{x}{2\sqrt{x+1}}-\sqrt{x+1}}{x^2}=\dfrac{-x-2}{2x^2\sqrt{x+1}}\)

2/ \(y'=\dfrac{1-x^2-\left(1-x^2\right)'x}{\left(1-x^2\right)^2}=\dfrac{1+x^2}{\left(1-x^2\right)^2}\)

3/ \(y'=\dfrac{-\left(x-\sqrt{x+1}\right)'}{\left(x-\sqrt{x+1}\right)^2}=\dfrac{-1+\dfrac{1}{2\sqrt{x+1}}}{\left(x-\sqrt{x+1}\right)^2}\)

4/ \(y'=f'\left(x\right)=2x-\dfrac{2x}{x^4}=2x-\dfrac{2}{x^3}\)

\(y'=0\Leftrightarrow\dfrac{2x^4-2}{x^3}=0\Leftrightarrow x=\pm1\)

5/ \(y'=\dfrac{\dfrac{1}{2\sqrt{1+x}}}{2\sqrt{1+\sqrt{1+x}}}\Rightarrow f\left(x\right).f'\left(x\right)=\sqrt{1+\sqrt{1+x}}.\dfrac{1}{4\sqrt{1+x}.\sqrt{1+\sqrt{1+x}}}=\dfrac{1}{4\sqrt{1+x}}=\dfrac{1}{2\sqrt{2}}\)

\(\Leftrightarrow2\sqrt{1+x}=\sqrt{2}\Leftrightarrow1+x=\dfrac{1}{2}\Leftrightarrow x=-\dfrac{1}{2}\)

Hãy nhớ câu tính đạo hàm này, bởi nó liên quan đến nguyên hàm sau này sẽ học

8 tháng 4 2021

ok cảm ơn bạn nhìu

NV
8 tháng 9 2021

\(f\left(x+3\right)=g\left(x\right)+x^2-10x+5\)

\(\Rightarrow f'\left(x+3\right)=g'\left(x\right)+2x-10\)

Thế \(x=1\) ta được:

\(f'\left(4\right)=g'\left(1\right)-8\)

\(\Rightarrow g'\left(1\right)=f'\left(4\right)+8=13\)

NV
4 tháng 4 2021

1a.

\(y'=3x^2.f'\left(x^3\right)-2x.g'\left(x^2\right)\)

b.

\(y'=\dfrac{3f^2\left(x\right).f'\left(x\right)+3g^2\left(x\right).g'\left(x\right)}{2\sqrt{f^3\left(x\right)+g^3\left(x\right)}}\)

2.

\(f'\left(x\right)=\left(m-1\right)x^3+\left(m-2\right)x^2-2mx+3=0\)

Để ý rằng tổng hệ số của vế trái bằng 1 nên pt luôn có nghiệm \(x=1\), sử dụng lược đồ Hooc-ne ta phân tích được:

\(\Leftrightarrow\left(x-1\right)\left[\left(m-1\right)x^2+\left(2m-3\right)x-3\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(m-1\right)x^2+\left(2m-3\right)x-3=0\left(1\right)\end{matrix}\right.\)

Xét (1), với \(m=1\Rightarrow x=-3\)

- Với \(m\ne1\Rightarrow\Delta=\left(2m-3\right)^2+12\left(m-1\right)=4m^2-3\)

Nếu \(\left|m\right|< \dfrac{\sqrt{3}}{2}\Rightarrow\) (1) vô nghiệm \(\Rightarrow f'\left(x\right)=0\) có đúng 1 nghiệm

Nếu \(\left|m\right|>\dfrac{\sqrt{3}}{2}\Rightarrow\left(1\right)\) có 2 nghiệm \(\Rightarrow f'\left(x\right)=0\) có 3 nghiệm

AH
Akai Haruma
Giáo viên
11 tháng 3 2018

Lời giải:

Ta có: \(f(x)=\sin ^4x+\cos ^4x=(\sin ^2x)^2+(\cos ^2x)^2+2\sin ^2x\cos ^2x-2\sin ^2x\cos ^2x\)

\(=(\sin ^2x+\cos ^2x)^2-\frac{1}{2}(2\sin x\cos x)^2\)

\(=1-\frac{1}{2}\sin ^2(2x)\)

Do đó: \(f'(x)=[1-\frac{1}{2}\sin ^2(2x)]'=-\frac{1}{2}.2.\sin 2x(\sin 2x)'\)

\(=-2\sin 2x.\cos 2x=-\sin 4x\)

Và: \(g(x)=\frac{1}{4}(\cos 4x)\Rightarrow g'(x)=\frac{1}{4}.(4x)'-\sin (4x)=-\sin 4x\)

Do đó: \(f'(x)=g'(x)\)

NV
5 tháng 4 2022

\(f'\left(x\right)=2cos2x-4\left(1-2m\right)sin2x-2m\)

Phương trình \(f'\left(x\right)=0\) có nghiệm

\(\Leftrightarrow2cos2x-4\left(1-2m\right)sin2x=2m\) có nghiệm

\(\Leftrightarrow cos2x-2\left(1-2m\right)sin2x=m\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(1^2+4\left(1-2m\right)^2\ge m^2\)

\(\Leftrightarrow15m^2-16m+5\ge0\)

\(\Leftrightarrow15\left(m-\dfrac{8}{15}\right)^2+\dfrac{11}{15}\ge0\) (luôn đúng)

Vậy \(f'\left(x\right)=0\) có nghiệm với mọi m