Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án B
Phương pháp
Dựa vào đồ thị hàm số xác định các khoảng đơn điệu, các điểm cực trị và GTLN, GTNN của hàm số.
Cách giải
Dựa vào đồ thị hàm số ta thấy hàm số đã cho
+) Đồng biến trên (-1;0) và (1;+∞), nghịch biến trên (-∞;-1) và (0;1).
+) Hàm số có 3 điểm cực trị.
+) Hàm số không có GTLN.
Do đó các mệnh đề (I), (III) đúng.
Phương pháp:
Quan sát bảng biến thiên và tìm điểm cực đại, cực tiểu và các giá trị cực đại, cực tiểu tương ứng.
Cách giải:
Số cách chọn là: 6.4 = 24 (cách). Quan sát bảng biến thiên ta thấy:
Hàm số đạt cực đại tại x = 2 và yCD = 3 .
Hàm số đạt cực tiểu tại x = 2 và yCT = 0 .
Vậy yCD = 3 và yCT = 0 .
Chọn: B
Chọn C.
Phương pháp: Dựa vào bảng biến thiên để xác định tiệm cận, cực trị, giá trị lớn nhất, giá trị nhỏ nhất.
Cách giải: Dựa vào bảng biến thiên dễ thấy đồ thị hàm số có tiệm cận ngang y = 0 và hai tiệm cận đứng x = 2, x = -2. Vậy (I) sai và (IV) đúng.
Đáp án D
Hàm số y = f ( x ) đạt cực tiểu tại x 0 = 0
Hàm số y = f ( x ) có ba điểm cực trị.
Phương trình f ( x ) = 0 có 4 nghiệm phân biệt
Hàm số đạt giá trị nhỏ nhất là -2 trên đoạn [-2;2]
Đáp án A.
Mệnh đề 3 sai ví dụ hàm số y=|x| liên tục tại x = 0 nhưng không có đạo hàm tại điểm đó.
Mệnh đề 4 đúng vì nếu hàm số y=f(x) có đạo hàm trên [a;b] thì hàm số liên tục trên [a;b] do đó hàm số có nguyên hàm trên [a;b]
Đáp án B
Dựa vào bảng biến thiên ta thấy:
+) lim x → − ∞ y = − 1 ⇒ đồ thị hàm số có TCN y = − 1
+) lim x → 1 − y = − ∞ ⇒ đồ thị hàm số có TCĐ x = 1
+) Hàm số không có giá trị lớn nhất vì lim x → + ∞ y = + ∞
+) Hàm số không có giá trị nhỏ nhất vì lim x → 1 − y = − ∞
Suy ra không có mệnh đề nào đúng
Đáp án D.
Phương pháp : Dựa vào BBT.
Cách giải :
A sai vì giá trị cực đại của hàm số bằng 2.
B sai vì hàm số có 3 cực trị.
C sai vì hàm số không có GTLN