Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(x=2\): \(2f\left(2\right)-2f\left(-2\right)=2+10=12\)
Với \(x=-2\): \(2f\left(-2\right)+2f\left(2\right)=-2+10=8\)
Cộng hai phương trình trên vế với vế ta được:
\(4f\left(2\right)=20\Leftrightarrow f\left(2\right)=5\)
Với x=10, ta có:
2. f(10)- 10. f(-10)=10+10
2f(10)-10f(-10)=20 (1)
Với x=-10. ta có:
2. f(-10)+10 f(10)=-10+10=0
=> 2 f (-10)=-10 f(10)
=> f(-10)=-5 f(10) (2)
Thay f(-10) từ PT (2) vào PT (1). ta có:
2f(10)-10f(-10)=20
<=> 2f(10) -10. (-5 f(10))=20
<=> 2 f(10)+50f(10)=20
<=> 52 f(10)=20
=> f(10)= 5/13
+) Với x = 2 ta có: f(2) + 2f(0) = 2.3
f(2) + 2f(0) = 6 (1)
+) Với x = 0 ta có: f(0) + 2f(2) = 0.3
f(0) + 2f(2) = 0
=> 2f(0) + 4f(2) = 0 (2)
Lấy (1) trừ (2) ta có:
-3f(2) = 6
=> f(2) = -2
bài 1: f(x) + 2f(2-x)=3x (1)
f(2-x)+2[(2-(2-x)]=3(2-x) suy ra f(2-x)+2f(x)=6-3x suy ra 2f(2-x)+4f(x)=12-6x (2)
Lấy (2)-(1) ta có: 4f(x)-f(x)=12-6x-3x suy ra f(x)=4-3x
vậy f(2)=4-3*2=-2
Bài 2 tương tự: f(x)+3f(1/x)=x^2 (1)
f(1/x)+3f(x)=1/x^2 suy ra 3f(1/x)+9f(x)=3/x^2 (2)
Lấy (2)-(1) ta có: 9f(x)-f(x)=3/x^2-x^2 suy ra f(x)=(3-x^4)/8x^2
Vậy f(2)=(3-2^4)(8*2^2)=-13/32
thế số vào x chắc thế
duyệt đi