K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

a) Tập xác định của f(x) :

A = {x ∈ R | x2 + 3x + 4 ≥ 0 và -x2 + 8x – 15 ≥ 0}

- x2 + 3x + 4 có biệt thức Δ = 32 – 16 < 0

Theo định lí dấu của tam thức:

x2 + 3x + 4 ≥ 0 ∀x ∈R

-x2 + 8x – 15 = 0 ⇔ x1 = 3, x2 = 5

-x2 + 8x – 15 > 0 ⇔ 3 ≤ x ≤ 5 ⇒ A = [3, 5]

b) A/B = [3, 4]

R\(A\B) = (-∞, 3) ∪ (4, +∞)



NV
6 tháng 3 2021

a.

\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+3m+5\ne0\) ; \(\forall x\)

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+3m+5\right)< 0\)

\(\Leftrightarrow-5m-4< 0\)

\(\Leftrightarrow m>-\dfrac{4}{5}\)

b. 

\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+m-6\ge0\) ;\(\forall x\)

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+m-6\right)\le0\)

\(\Leftrightarrow-3m+7\le0\)

\(\Rightarrow m\ge\dfrac{7}{3}\)

c.

\(x^2-2\left(m+3\right)x+m+9>0\) ;\(\forall x\)

\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m+9\right)< 0\)

\(\Leftrightarrow m^2+5m< 0\Rightarrow-5< m< 0\)

11 tháng 10 2023

sao lại phải =0

 

18 tháng 12 2020

a, \(A\cup B=(-4;5]\)

\(A\cap B=[-3;4)\)

\(A\backslash B=\left[4;5\right]\)

\(B\backslash A=\left(-4;-3\right)\)

b, \(A\cup B=\left(-3;7\right)\)

\(A\cap B=[1;2)\cup(3;5]\)

\(A\backslash B=\left[2;3\right]\)

\(B\backslash A=\left(-3;1\right)\cup\left(5;7\right)\)

c, \(A\cup B=\left[\dfrac{1}{2};3\right]\)

\(A\cap B=\left[1;\dfrac{3}{2}\right]\)

\(A\backslash B=[\dfrac{1}{2};1)\)

\(B\backslash A=(\dfrac{3}{2};3]\)

d, \(A\cup B=(-5;2]\cup(3;6]\)

\(A\cap B=\left\{0\right\}\cup[4;5)\)

\(A\backslash B=(0;2]\cup\left[-5;6\right]\)

\(B\backslash A=[-5;0)\cup\left(3;4\right)\)

25 tháng 10 2021

a: TXĐ: \(D=R\backslash\left\{-\dfrac{1}{2}\right\}\)

b: TXĐ: \(D=R\backslash\left\{-3;1\right\}\)

c: TXĐ: \(D=\left[-\dfrac{1}{2};3\right]\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Ta thấy hàm số có nghĩa với mọi số thực nên \(D = \mathbb{R}\)

b)

Điều kiện: \(2 - 3x \ge 0 \Leftrightarrow x \le \frac{2}{3}\)

Vậy tập xác định: \(S = \left( { - \infty ;\frac{2}{3}} \right]\)

c) Điều kiện: \(x + 1 \ne 0 \Leftrightarrow x \ne  - 1\)

Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\)

d) Ta thấy hàm số có nghĩa với mọi \(x \in \mathbb{Q}\) và \(x \in \mathbb{R}\backslash \mathbb{Q}\) nên tập xác định: \(D = \mathbb{R}\).

12 tháng 3 2021

Có dấu = nha, mình nhầm

12 tháng 3 2021

NV
19 tháng 3 2022

Hàm có TXĐ là R khi và chỉ khi: \(\left(m-2\right)x^2+\left(m-2\right)x+4\ge0;\forall x\)

- Với \(m=2\) thỏa mãn

- Với  \(m\ne2\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-2>0\\\Delta=\left(m-2\right)^2-16\left(m-2\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>2\\\left(m-2\right)\left(m-18\right)\le0\end{matrix}\right.\) \(\Rightarrow2< m\le18\)

Kết hợp lại ta được: \(2\le m\le18\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \(2x + 7 \ge 0,\)tức là khi \(x \ge \frac{{ - 7}}{2}.\)

Vậy tập xác định của hàm số này là \(D = \left[ { - \frac{7}{2}; + \infty )} \right.\)

b) Biểu thức \(f(x)\) có nghĩa khi và chỉ khi \({x^2} - 3x + 2 \ne 0,\)tức là khi \(x \ne 2,x \ne 1.\)

Vậy tập xác định của hàm số này là \(D = \mathbb{R}\backslash \left\{ {1;2} \right\}\)

11 tháng 7 2019

a) \(D=(0;+\infty)\backslash\left\{1\right\}\)

b) \(D=[2;+\infty)\)

22 tháng 10 2021

a: TXĐ: D=R

b: \(f\left(-1\right)=\dfrac{2}{-1-1}=\dfrac{2}{-2}=-1\)

\(f\left(0\right)=\sqrt{0+1}=1\)

\(f\left(1\right)=\sqrt{1+1}=\sqrt{2}\)

\(f\left(2\right)=\sqrt{3}\)