K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 1 2021

Trước hết ta xét: \(g\left(x\right)=\dfrac{1}{x+a}=\left(x+a\right)^{-1}\) với a là hằng số bất kì

\(g'\left(x\right)=-1.\left(x+a\right)^{-2}=\left(-1\right)^1.1!.\left(x+a\right)^{-\left(1+1\right)}\) 

\(g''\left(x\right)=-1.\left(-2\right).\left(x+a\right)^{-3}=\left(-1\right)^2.2!.\left(x+a\right)^{-\left(2+1\right)}\)

Từ đó ta dễ dàng tổng quát được:

 \(g^{\left(n\right)}\left(x\right)=\left(-1\right)^n.n!.\left(x+a\right)^{-\left(n+1\right)}=\dfrac{\left(-1\right)^n.n!}{\left(x+a\right)^{n+1}}\)

Xét: \(f\left(x\right)=\dfrac{x^2+1}{x\left(x-2\right)\left(x+2\right)}=-\dfrac{1}{4}.\left(\dfrac{1}{x}\right)+\dfrac{5}{8}\left(\dfrac{1}{x+2}\right)+\dfrac{5}{8}\left(\dfrac{1}{x-2}\right)\)

Áp dụng công thức trên ta được:

\(f^{\left(30\right)}\left(1\right)=\dfrac{1}{4}.\dfrac{\left(-1\right)^{30}.30!}{1^{31}}+\dfrac{5}{8}.\dfrac{\left(-1\right)^{30}.30!}{\left(1+2\right)^{31}}+\dfrac{5}{8}.\dfrac{\left(-1\right)^{30}.30!}{\left(1-2\right)^{31}}\)

Bạn tự rút gọn kết quả nhé

NV
14 tháng 1 2021

\(f\left(x\right)=\dfrac{x^2+1}{x^3}-4x\) hay \(f\left(x\right)=\dfrac{x^2+1}{x^3-4x}\) bạn?

2 tháng 5 2019

Chọn A

9 tháng 12 2018

Đáp án A

30 tháng 11 2017

Đáp án A

Phương pháp:

Dựa vào khái niệm cực trị và các kiến thức liên quan.

Cách giải:

(1) chỉ là điều kiện cần mà không là điều kiện đủ.

VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.

(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.

(3) hiển nhiên sai.

Vậy (1), (2), (3): sai; (4): đúng

NV
22 tháng 10 2021

\(f\left(x\right)=\dfrac{x^2-1+1}{1-x}=-\left(x+1\right)-\dfrac{1}{x-1}\)

Sau 2 lần đạo hàm thì \(-\left(x+1\right)\) sẽ về 0 nên ta có:

\(f^{\left(n\right)}\left(x\right)=\dfrac{\left(-1\right)^{n+1}.n!}{\left(x-1\right)^{n+1}}\) với \(n\ge3\)

 

23 tháng 5 2019

Chọn A

 

Cách 1: Từ đồ thị hàm số của ta thấy có hai cực trị dương nên hàm số lấy đối xứng phần đồ thị hàm số bên phải trục tung qua trục tung ta được bốn cực trị, cộng thêm giao điểm của đồ thị hàm số với trục tung nữa ta được tổng cộng là cực trị.

5 tháng 5 2018

24 tháng 5 2017

Chọn đáp án D

Do hàm số đạt cực đại tại điểm x=1 f′(1) = 0 và đường thẳng Δ qua hai điểm (0;−3);(1;0) nên có phương trình y=3x−3.

Δ là tiếp tuyến của đồ thị hàm số  f(x) tại điểm có hoành độ  x = 2 ⇒ f ' ( 2 ) = k △ =3

Vậy

 

 

 

7 tháng 3 2018