Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: Khi m=-1 thì hệ phương trình sẽ là:
\(\left\{{}\begin{matrix}2x+y=-3+1=-2\\3x+2y=-2-3=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x+2y=-4\\3x+2y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\2x+y=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1\\y=-2-2x=-2-2=-4\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}2x+y=3m+1\\3x+2y=2m-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x+2y=6m+2\\3x+2y=2m-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x+2y-3x-2y=6m+2-2m+3\\2x+y=3m+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=4m+5\\y=3m+1-2x=3m+1-8m-10=-5m-9\end{matrix}\right.\)
x<1 và y<6
=>\(\left\{{}\begin{matrix}4m+5< 1\\-5m-9< 6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m< -4\\-5m< 15\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< -1\\m>-3\end{matrix}\right.\Leftrightarrow-3< m< -1\)
Bài 1
ĐKXĐ: m ≠ 3
a) Thay x = 0; y = -2 vào hàm số, ta có:
(m - 3).0 - 2m + 2 = -2
⇔ -2m = -2 - 2
⇔ -2m = -4
⇔ m = -4/(-2)
⇔ m = 2 (nhận)
Vậy m = 2 thì đồ thị hàm số cắt trục tung tại điểm có tung độ là -2
b) Để (d) // (d1) thì:
m - 3 = 3m + 1 và -2m + 2 4
*) m - 3 = 3m + 1
⇔ 3m - m = -3 - 1
⇔ 2m = -4
⇔ m = -2 (nhận)
*) -2m + 2 ≠ 4
⇔ -2m ≠ 4 - 2
⇔ -2m ≠ 2
⇔ m ≠ -1
Vậy m = -2 thì (d) // (d1)
c) (d) cắt trục hoành nên:
(m - 3)x - 2m + 2 = 0
⇔ (m - 3)x = 2m - 2
⇔ x = (2m - 2)/(m - 3)
= (2m - 6 + 4)/(m - 3)
= 2 + 4/(m - 3)
x nguyên khi 4 (m - 3)
⇒ m - 3 ∈ Ư(4) = {-4; -2; -1; 1; 2; 4}
⇒ m ∈ {-1; 1; 2; 4; 5; 7}
Vậy m ∈ {-1; 1; 2; 4; 5; 7} thì (d) cắt trục hoành tại điểm có hoành độ là số nguyên
4) Cùng cắt nhau tại 1 điểm trên trục tung nên x = 0 => m - 3 = 5 => m = 8
3) \(m=\frac{2+\sqrt{2}}{2\sqrt{2}-1}=\frac{\left(2+\sqrt{2}\right)\left(2\sqrt{2}+1\right)}{7}=\frac{5\sqrt{2}+6}{7}\)
a: Để hàm số đồng biến thì 2m-3>0
hay \(m>\dfrac{3}{2}\)
Để hàm số nghịch biến thì 2m-3<0
hay \(m< \dfrac{3}{2}\)
b: Thay x=2 và y=5 vào hàm số, ta được:
\(\left(2m-3\right)\cdot2+4=5\)
\(\Leftrightarrow2m-3=\dfrac{1}{2}\)
\(\Leftrightarrow2m=\dfrac{7}{2}\)
hay \(m=\dfrac{7}{4}\)
1: Thay x=-7 và y=0 vào (d), ta được:
-7(m+1)+2m-5=0
=>-7m-7+2m-5=0
=>-5m-12=0
=>m=-12/5
2: Thay x=0 và y=3 vào (d), ta được:
0(m+1)+2m-5=3
=>2m-5=3
=>2m=8
=>m=4
3: Thay x=0 và y=0 vào (d), ta được:
0(m+1)+(2m-5)=0
=>2m-5=0
=>m=5/2
Do giao điểm nằm trên trục hoành nên tung độ thỏa mãn:
\(y=-0+1\Rightarrow y=1\)
\(\Rightarrow\) tọa độ giao điểm là (0;1)
Thay vào pt d:
\(1=\left(2m-1\right).0+m+2\Leftrightarrow m=-1\)
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
Để (d) cắt (d') tại một điểm trên trục hoành thì
\(\left\{{}\begin{matrix}2m+1< >m+1\\\dfrac{-2m}{m+1}=\dfrac{-3}{2m+1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< >0\\2m\left(2m+1\right)=3\left(m+1\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< >0\\4m^2+2m-3m-3=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< >0\\4m^2-m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< >0\\\left(m-1\right)\left(4m+3\right)=0\end{matrix}\right.\)
=>\(m\in\left\{1;-\dfrac{3}{4}\right\}\)