Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có tổng của các chữ số của a là 52 mà 52 không chia hết cho 3 nên a không chia hết cho 3
Ta có tổng của các chữ số của b là 104 mà 104 không chia hết cho 3 nên a không chia hết cho 3
Vậy a.b không chia hết cho 3.
b/ Ta có tổng của các chữ số trong a là 31 nên a chia cho 3 dư 1.
Tổng của các chữ số trong b là 38 nên b chia 3 dư 2
\(\Rightarrow a.b\)chia cho 3 dư 1.2 = 2.
Vậy (a.b - 2) chia cho 3 thì dư (2 - 2) = 0. Hay (a.b - 2) chia hết cho 3
Câu 1: a
tổng các chữ số của a=52 ( vì a gồm 52 số 1)
tg tự tổng các chữ số của b=104
1 số đc gọi là chia hết cho 3 khi tổng các chữ số của nó phải chia hết cho 3
Vì vậy a=52 mà 5+2=7 ; 7 không chia hết cho 3 =>a k chia hết cho 3
b=104 mà 1+0+4=5; 5 cũg k chia hết cho 3=>b k chia hết cho 3
tích của a.b là tích của 2 số k chia hết cho 3 nên k chia hết cho 3
b.
Do a gồm 31 chữ số 1 nên tổng các chữ số của a là 31 . 1 = 31 chia 3 dư 1
Do b gồm 38 chữ số 1 nên tổng các chữ số của b là 38 . 1 = 38 chia 3 dư 2
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 => a chia 3 dư 1, b chia 3 dư 2
=> ab chia 3 dư 2
Mà 2 chia 3 dư 2
=> ab -2 chia hết cho 3
Vậy: ab - 2 chia hết cho 3 (đcpcm)
a) Gọi ƯCLN(a ; b) = d
=> \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮d\\b^2⋮d\end{cases}}\Rightarrow a^2+b^2⋮d\)
mà theo đề ra \(a^2+b^2⋮3\)
=> \(d⋮3\)
Mà \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\)
b) Gọi ƯCLN(a ; b) = d
=> \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮d\\b^2⋮d\end{cases}}\Rightarrow a^2+b^2⋮d\)
mà theo đề ra \(a^2+b^2⋮7\)
=> \(d⋮7\)
Mà \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a⋮7\\b⋮7\end{cases}}\)
b, a+1 và b+2007 chia hết cho 6
=> a+1 và b+2007 đều chẵn
=> a và b đều lẻ
=> a+b chẵn
Mà a là số nguyên dương nên 4^a chẵn
=> 4^a+a+b chẵn
=> 4^a+a+b chia hết cho 2 (1)
Lại có : a+1 và b+2007 chia hết cho 3
=> a chia 3 dư 2 và b chia hết cho 3
=> a+b chia 3 dư 2
Mặt khác : 4^a = (3+1)^a = B(3)+1 chia 3 dư 1
=> 4^a+a+b chia hết cho 3 (2)
Từ (1) và (2) => 4^a+a+b chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )
Tk mk nha
Vì chưa thấy ai giải câu a nên thầy sẽ giải hộ nhé
Ta có \(32\equiv1\left(mod31\right)\Rightarrow32^{402}\equiv1^{402}=1\left(mod31\right)\)(Theo thuyết đồng dư)
nên \(32^{402}=2^{2010} \)chia 31 dư 1 suy ra \(2^{2011}\)chia 31 dư 2
Phần còn lại em tự làm nhé
1. gọi 3 số tự nhiên liên tiếp đó là a-1, a, a+1
mà tích của 2 số sau lớn hơn tích của 2 số đầu => a(a+1)-2=a(a-1)
=> a^2+a-2=a^2-a
=>a^2 + a -2 - a^2 +a =0
=> 2a - 2 = 0
=> 2(a-1)=0
=> a-1 = 0
=> a=1
=> a-1 = 1-1 = 0
a+1 = 1+1=2
vậy 3 số tự nhiên liên tiếp đó là 0,1,2
Vì số chính phương chia 3 dư 1 hoặc 0
Do đó các cặp số dư khi chia lần lượt a2 và b2 cho 3 là
(0;0) (0;1) (1;0) (1;1)
Vì a2+b2chia hết 3 nên ta nhận cặp (0;0) => a,b đều chia hết 3