K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2017

Vì số chính phương chia 3 dư 1 hoặc 0

Do đó các cặp số dư khi chia lần lượt a2 và b2 cho 3 là

(0;0) (0;1) (1;0) (1;1)

Vì a2+b2chia hết 3 nên ta nhận cặp (0;0) => a,b đều chia hết 3

23 tháng 9 2017

a2 + b2 chia hết cho ab

=>a2 + b2 chia hết cho a =>b chia hết cho a (1)

Và a2 + b2 chia hết cho b => a chia hết cho b (2)

Tử 1 và 2 => a =b

15 tháng 7 2017

a/ Ta có tổng của các chữ số của a là 52 mà 52 không chia hết cho 3 nên a không chia hết cho 3

Ta có tổng của các chữ số của b là 104 mà 104 không chia hết cho 3 nên a không chia hết cho 3

Vậy a.b không chia hết cho 3.

b/ Ta có tổng của các chữ số trong a là 31 nên a chia cho 3 dư 1.

Tổng của các chữ số trong b là 38 nên b chia 3 dư 2 

\(\Rightarrow a.b\)chia cho 3 dư 1.2 = 2.

Vậy (a.b - 2) chia cho 3 thì dư (2 - 2) = 0. Hay (a.b - 2) chia hết cho 3

15 tháng 7 2017

Câu 1: a

tổng các chữ số của a=52 ( vì a gồm 52 số 1) 

tg tự tổng các chữ số của b=104 

1 số đc gọi là chia hết cho 3 khi tổng các chữ số của nó phải chia hết cho 3 

Vì vậy a=52 mà 5+2=7 ; 7 không chia hết cho 3 =>a k chia hết cho 3 

b=104 mà 1+0+4=5; 5 cũg k chia hết cho 3=>b k chia hết cho 3 

tích của a.b là tích của 2 số k chia hết cho 3 nên k chia hết cho 3 

b.

Do a gồm 31 chữ số 1 nên tổng các chữ số của a là 31 . 1 = 31 chia 3 dư 1

Do b gồm 38 chữ số 1 nên tổng các chữ số của b là 38 . 1 = 38 chia 3 dư 2

Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 => a chia 3 dư 1, b chia 3 dư 2

=> ab chia 3 dư 2

Mà 2 chia 3 dư 2

=> ab -2 chia hết cho 3

Vậy: ab - 2 chia hết cho 3 (đcpcm)

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

2 tháng 9 2020

a) Gọi ƯCLN(a ; b) = d

=> \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮d\\b^2⋮d\end{cases}}\Rightarrow a^2+b^2⋮d\)

mà theo đề ra \(a^2+b^2⋮3\)

=> \(d⋮3\)

Mà \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\)

b) Gọi ƯCLN(a ; b) = d

=> \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮d\\b^2⋮d\end{cases}}\Rightarrow a^2+b^2⋮d\)

mà theo đề ra \(a^2+b^2⋮7\)

=> \(d⋮7\)

Mà \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a⋮7\\b⋮7\end{cases}}\)

27 tháng 8 2017

Gọi 1/4 số a là 0,25 . Ta có :

                   a . 3 - a . 0,25 = 147,07

                   a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )

                      a . 2,75 = 147,07

                         a = 147,07 : 2,75

                          a = 53,48

mình nha

2 tháng 1 2018

Tui biet nhung ko tra loi dc

1 tháng 3 2018

b, a+1 và b+2007 chia hết cho 6

=> a+1 và b+2007 đều chẵn

=> a và b đều lẻ 

=> a+b chẵn

Mà a là số nguyên dương nên 4^a chẵn

=> 4^a+a+b chẵn

=> 4^a+a+b chia hết cho 2 (1)

Lại có : a+1 và b+2007 chia hết cho 3

=> a chia 3 dư 2 và b chia hết cho 3

=> a+b chia 3 dư 2

Mặt khác : 4^a = (3+1)^a = B(3)+1 chia 3 dư 1

=> 4^a+a+b chia hết cho 3 (2)

Từ (1) và (2) => 4^a+a+b chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )

Tk mk nha

30 tháng 6 2020

Vì chưa thấy ai giải câu a nên thầy sẽ giải hộ nhé

Ta có \(32\equiv1\left(mod31\right)\Rightarrow32^{402}\equiv1^{402}=1\left(mod31\right)\)(Theo thuyết đồng dư)

nên \(32^{402}=2^{2010} \)chia 31 dư 1 suy ra \(2^{2011}\)chia 31 dư 2

Phần còn lại em tự làm nhé

15 tháng 7 2019

1. gọi 3 số tự nhiên liên tiếp đó là a-1, a, a+1

mà tích của 2 số sau lớn hơn tích của 2 số đầu => a(a+1)-2=a(a-1)

=> a^2+a-2=a^2-a

=>a^2 + a -2 - a^2 +a =0

=> 2a - 2 = 0

=> 2(a-1)=0

=> a-1 = 0

=> a=1

=> a-1 = 1-1 = 0

     a+1 = 1+1=2

vậy 3 số tự nhiên liên tiếp đó là 0,1,2