Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\y\ge-3\end{matrix}\right.\) \(\Rightarrow x+y+1\ge0\)
Bình phương 2 vế giả thiết:
\(\left(x+y+1\right)^2=4\left(x+y+1+2\sqrt{\left(x-2\right)\left(y+3\right)}\right)\)
\(\Rightarrow\left(x+y+1\right)^2\le4\left(x+y+1+x+y+1\right)=5\left(x+y+1\right)\)
\(\Rightarrow x+y+1\le5\Rightarrow x+y\le4\)
Mặt khác:
\(\left(x+y+1\right)^2=4\left(x+y+1+2\sqrt{\left(x-2\right)\left(y+3\right)}\right)\ge4\left(x+y+1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x+y+1\ge4\\x+y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+y\ge3\\x+y=-1\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}3\le S\le4\\S=-1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x-4=a\\y-3=b\end{matrix}\right.\) \(\Rightarrow a^2+b^2=5\)
\(Q=\sqrt{\left(a+5\right)^2+b^2}+\sqrt{\left(a+3\right)^2+\left(b+4\right)^2}\)
\(\Rightarrow Q\le\sqrt{2\left[\left(a+5\right)^2+b^2+\left(a+3\right)^2+\left(b+4\right)^2\right]}\) (Bunhiacopxki)
\(\Rightarrow Q\le\sqrt{4\left(a^2+8a+b^2+4b+25\right)}\)
\(\Rightarrow Q\le\sqrt{4\left(a^2+2.4a+b^2+2.2b+25\right)}\)
\(\Rightarrow Q\le\sqrt{4\left(a^2+2\left(a^2+4\right)+b^2+2\left(b^2+1\right)+25\right)}\)
\(\Rightarrow Q\le\sqrt{4\left(3a^2+3b^2+35\right)}\le\sqrt{4\left(3.5+35\right)}=10\sqrt{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=6\\y=4\end{matrix}\right.\)
\(\left(x^3+y^3\right)\left(x+y\right)=xy\left(1-x\right)\left(1-y\right)\Leftrightarrow\left(\frac{x^2}{y}+\frac{y^2}{x}\right)\left(x+y\right)=\left(1-x\right)\left(1-y\right)\left(1\right)\)
Ta có : \(\left(\frac{x^2}{y}+\frac{y^2}{x}\right)\left(x+y\right)\ge4xy\)
và \(\left(1-x\right)\left(1-y\right)=1-\left(x+y\right)+xy\le1-2\sqrt{xy}+xy\)
\(\Rightarrow1-2\sqrt{xy}+xy\ge4xy\Leftrightarrow0\) <\(xy\le\frac{1}{9}\)
Dễ chứng minh : \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\le\frac{1}{1+xy};\left(x,y\in\left(0;1\right)\right)\)
\(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}\le\sqrt{2\left(\frac{1}{1+x^2}+\frac{1}{1+y^2}\right)}\le\sqrt{2\left(\frac{2}{1+xy}\right)}=\frac{2}{\sqrt{1+xy}}\)
\(3xy-\left(x^2+y^2\right)=xy-\left(x-y\right)^2\le xy\)
\(\Rightarrow P\le\frac{2}{\sqrt{1+xy}}+xy=\frac{2}{\sqrt{1+t}}+t\), \(\left(t=xy\right)\), (0<\(t\le\frac{1}{9}\)
Xét hàm số :
\(f\left(t\right)=\frac{2}{\sqrt{t+1}}+t\) , (0<\(t\le\frac{1}{9}\)
Ta có Max \(f\left(t\right)=f\left(\frac{1}{9}\right)=\frac{6\sqrt{10}}{10}+\frac{1}{9}\), \(t\in\left(0;\frac{1}{9}\right)\)gọi T là tập hợp giá trị của F
\(\begin{cases}\sqrt[3]{x}\left(\sqrt[3]{x}-1\right)+\sqrt[3]{y}\left(\sqrt[3]{y}-1\right)=\sqrt[3]{xy}\\\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{xy}=m\end{cases}\)
Đặt S = \(\sqrt[3]{x}+\sqrt[3]{y},P=\sqrt[3]{xy}\) điều kiện \(S^2\ge4P\)hệ 1 trở thành
\(\begin{cases}S^2-S-3P=0\\S+P=m\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}S^2+2S-3m=0\\P=m-s\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}m=\frac{S^2+2S}{3}\\P=\frac{S^2-S}{3}\end{cases}\)
Ta có \(S^2\ge4P\Leftrightarrow S^2\ge\frac{4S^2-4S}{3}\Leftrightarrow s^2-4S\le0\Leftrightarrow0\le S\le4\)
từ đó , hệ 1 có nghiệm \(\Leftrightarrow\)hệ 2 có nghiệm (S;P) thỏa mãn \(S^2\ge4P\Leftrightarrow\)phương trình \(S^2+2S-3m=0\)có nghiệm S thỏa mãn điều kiện 0\(0\le S\le4\)tức là
\(\Delta'=1+3m\ge0\)và \(\left[\begin{array}{nghiempt}0\le-1-\sqrt{1+3m}\le4\\0\le-1+\sqrt{1+3m}\le4\end{array}\right.\)\(\Leftrightarrow\)\(\begin{cases}m\ge-\frac{1}{3}\\1\le\sqrt{1+3m}\le5\end{cases}\)\(\Leftrightarrow\)\(0\le m\le8\)
vậy max F=8, min=0