Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
\(P=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{-2}{-1}=2\)
1: Δ=(-2)^2-4*m
=4-4m
m<1
=>-4m>-4
=>-4m+4>0
=>Phương trình luôn có hai nghiệm phân biệt khi m<1
Thiếu 1 phương trình :
\(4x^2-4\left(2n+1\right)x+4n^2+96mnp+1=0\)
1, Với x >= 0 ; x khác 1
\(P=\dfrac{\sqrt{x}\left(x-1\right)+2\sqrt{x}\left(\sqrt{x}-1\right)-\left(3x+1\right)\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x\sqrt{x}+2x-3\sqrt{x}-3x\sqrt{x}-3x-\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-2x\sqrt{x}-x-4\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)
mình sửa đề câu 2 nhé
a, \(x^2+mx-1=0\)
\(\Delta=m^2-4\left(-1\right)=m^2+4>0\)
Vậy pt luôn có 2 nghiệm pb
b, Theo Vi et : \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-1\end{matrix}\right.\)
Ta có : \(\left(x_1+x_2\right)^2-2x_1x_2=7\)
Thay vào ta được : \(m^2+2=7\Leftrightarrow m^2=5\Leftrightarrow m=\pm\sqrt{5}\)
Ta có: \(\frac{1}{m}+\frac{1}{n}=\frac{1}{2}\)
\(\Rightarrow\frac{m+n}{mn}=\frac{1}{2}\)
\(\Leftrightarrow mn=2\left(m+n\right)\)
\(\Rightarrow2mn=4\left(m+n\right)\)
Từ Phương trình 1 lập \(\Delta_1\)
\(\Delta_1=m^2-4n\)
Phương trình 2 có \(\Delta_2=n^2-4m\)
lấy \(\Delta_1+\Delta_2\)
\(=m^2+n^2-4m-4n\)
\(=m^2-4\left(m+n\right)+n^2\)
\(=m^2-2mn+n^2\)
\(=\left(m-n\right)^2\ge0\)
vậy tồn tại delta1 hoặc delta 2 dương nên một trong 2 phương trình đã cho có ít nhất 1 phương trình có nghiệm