Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(y'=3x^2-3\left(m-2\right)x-3\left(m-1\right)\), với mọi \(x\in R\)
\(y'=0\Leftrightarrow x^2-\left(m-2\right)x-m+1=0\Leftrightarrow x_1=-1;x_2=m-1\)
Chú ý rằng với m > 0 thì \(x_1< x_2\). Khi đó hàm số đạt cực đại tại \(x_1=-1\) và đạt cực tiểu tại \(x_2=m-1\). Do đó :
\(y_{CD}=y\left(-1\right)=\frac{3m}{2};y_{CT}=y\left(m-1\right)=-\frac{1}{2}\left(m+2\right)\left(m-1\right)^2+1\)
Từ giả thiết ta có \(2.\frac{3m}{2}-\frac{1}{2}\left(m+2\right)\left(m-1\right)^2+1\Leftrightarrow6m-6-\left(m+2\right)\left(m-1\right)^2=0\)
\(\Leftrightarrow\left(m-1\right)\left(m^2+m-8\right)=0\Leftrightarrow m=1;m=\frac{-1\pm\sqrt{33}}{2}\)
Đối chiếu yêu cầu m > 0, ta có giá trị cần tìm là \(m=1;m=\frac{-1\pm\sqrt{33}}{2}\)
\(y=\dfrac{x^2+\left(m+2\right)x+3m+2}{x+1}\)
\(\Rightarrow y'=\dfrac{x^2+2x-2m}{\left(x+1\right)^2}\)
Để hàm số có cực đại và cực tiểu
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2x-2m=0\text{ có 2 nghiệm phân biệt}\\x+1\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\x\ne1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4+8m>0\\x\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{2}\\m\ne1\end{matrix}\right.\) (1)
Ta có:
\(y^2_{CĐ}+y^2_{CT}>\dfrac{1}{2}\)
\(\Leftrightarrow\left(y_{CĐ}+y_{CT}\right)^2-2.y_{CĐ}.y_{CT}>\dfrac{1}{2}\)
\(\Leftrightarrow\left(-2\right)^2-2.\left(-2m\right)>\dfrac{1}{2}\)
\(\Leftrightarrow4+4m>\dfrac{1}{2}\)
\(\Leftrightarrow m>-\dfrac{7}{8}\) (2)
Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{2}\\m\ne1\end{matrix}\right.\)
5.
\(y'=4x^3-8x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2}\\x=-\sqrt{2}\left(l\right)\end{matrix}\right.\)
\(y\left(0\right)=-2\) ; \(y\left(\sqrt{2}\right)=-6\) ; \(y\left(\sqrt{3}\right)=-5\)
\(\Rightarrow M=-2\)
\(2018^{2\left(x^2-y+1\right)}=\frac{2x+y}{x^2+2x+1}\)
\(\Leftrightarrow2\left(x^2-y+1\right)=log_{2018}\left(\frac{2x+y}{x^2+2x+1}\right)\)
\(\Leftrightarrow2\left(x^2+2x+1-2x-y\right)=log_{2018}\left(2x+y\right)-log_{2018}\left(x^2+2x+1\right)\)
\(\Leftrightarrow2\left(x^2+2x+1\right)+log_{2018}\left(x^2+2x+1\right)=log_{2018}\left(2x+y\right)+2\left(2x+y\right)\)
Đặt \(f\left(u\right)=log_{2018}u+2u\)
\(\begin{matrix}x^2+2x+1>0\\2x+y>0\end{matrix}\Rightarrow u>0\)
\(f'\left(u\right)=\frac{1}{u.ln2018}+2>0\)
Suy ra hàm số đồng biến
\(\Leftrightarrow f\left(x^2+2x+1\right)=f\left(2x+y\right)\)\(\Leftrightarrow x^2+2x+1=2x+y\) (tính chất hàm đồng biến)
\(\Leftrightarrow y=x^2+1\)
\(P=2y-3x=2x^2-3x+2\)
\(P=2\left(x-\frac{3}{4}\right)^2+\frac{7}{8}\)
\(P_{min}=\frac{7}{8}\) khi \(x=\frac{3}{4}\)
\(\Leftrightarrow log_{\frac{1}{3}}xy\le log_{\frac{1}{3}}\left(x+y^2\right)\)
\(\Rightarrow xy\ge x+y^2\) (do \(\frac{1}{3}< 1\))
\(\Rightarrow x\left(y-1\right)\ge y^2\) (\(y-1>0\) do
Nếu \(y\le1\Rightarrow\left\{{}\begin{matrix}VT\le0\\VP>0\end{matrix}\right.\) (vô lý)
\(\Rightarrow y>1\Rightarrow x\ge\frac{y^2}{y-1}\)
\(\Rightarrow P=2x+3y\ge\frac{2y^2}{y-1}+3y=5y+2+\frac{2}{y-1}\)
\(\Rightarrow P\ge5\left(y-1\right)+\frac{2}{y-1}+7\ge2\sqrt{\frac{10\left(y-1\right)}{y-1}}+7=7+2\sqrt{10}\)
\(P_{min}=7+2\sqrt{10}\) khi \(\left\{{}\begin{matrix}y=1+\frac{\sqrt{10}}{5}\\x=\frac{y^2}{y-1}=...\end{matrix}\right.\)
\(P=\sqrt{\left(1-x\right)^2+y^2}+\sqrt{\left(x+1\right)^2+y^2}+2-y\)
\(P\ge\sqrt{\left(1-x+x+1\right)^2+\left(y+y\right)^2}+2-y\)
\(P\ge\sqrt{4y^2+4}+2-y=2\sqrt{y^2+1}+2-y\)
Xét hàm \(f\left(y\right)=2\sqrt{y^2+1}-y+2\)
\(f'\left(y\right)=\frac{2y}{\sqrt{y^2+1}}-1=0\Leftrightarrow2y=\sqrt{y^2+1}\) (\(y\ge0\))
\(\Leftrightarrow3y^2=1\Rightarrow y=\frac{\sqrt{3}}{3}\)
Từ BBT ta thấy \(f\left(y\right)_{min}=f\left(\frac{\sqrt{3}}{3}\right)=2+\sqrt{3}\)
\(\Rightarrow P_{min}=2+\sqrt{3}\)
\(\left(xy-1\right)2^{2xy-1}=\left(x^2+y\right)2^{x^2+y}\)
\(\Leftrightarrow\left(xy-1\right)2^{2\left(xy-1\right)+1}=\left(x^2+y\right)2^{x^2+y}\)
\(\Leftrightarrow2\left(xy-1\right)2^{2\left(xy-1\right)}=\left(x^2+y\right)2^{x^2+y}\)
Do vế phải luôn dương \(\Rightarrow VT>0\Rightarrow xy-1>0\) (1)
Xét hàm \(f\left(t\right)=t.2^t\) với \(t>0\Rightarrow f'\left(t\right)=2^t+t.2^t.ln2>0\)
\(\Rightarrow f\left(t\right)\) đồng biến \(\Rightarrow f\left(t_1\right)=f\left(t_2\right)\Leftrightarrow t_1=t_2\)
\(\Rightarrow2\left(xy-1\right)=x^2+y\Rightarrow2xy-y=x^2+2\) (thay \(x=\dfrac{1}{2}\) thấy ko phải nghiệm)
\(\Rightarrow y=\dfrac{x^2+2}{2x-1}\) (2)
Thay (2) vào (1): \(xy-1>0\Rightarrow x.\left(\dfrac{x^2+2}{2x-1}\right)-1>0\Rightarrow\dfrac{x^3+2x}{2x-1}-1>0\)
\(\Rightarrow\dfrac{x^3+1}{2x-1}>0\Rightarrow2x-1>0\) (do \(x>0\Rightarrow x^3+1>0\))
Vậy \(y=\dfrac{x^2+2}{2x-1}=\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{9}{4\left(2x-1\right)}=\dfrac{2x-1}{4}+\dfrac{9}{4\left(2x-1\right)}+\dfrac{1}{2}\)
\(\Rightarrow y\ge2\sqrt{\dfrac{\left(2x-1\right)}{4}.\dfrac{9}{4\left(2x-1\right)}}+\dfrac{1}{2}=2\)
\(\Rightarrow y_{min}=2\) khi \(\dfrac{2x-1}{4}=\dfrac{9}{4\left(2x-1\right)}\Rightarrow x=2\)
Đáp án B