cho hai số hưu tỉ a/b và c/d (a,b,c,d thuộc z b>0,d>0)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2015

\(\frac{a}{b}<\frac{c}{d}\Leftrightarrow\frac{a.d}{b.d}<\frac{c.b}{b.d}\)

2 phân số có cùn mẫu mà \(\frac{a.d}{b.d}<\frac{c.b}{b.d}\)=>a.d<b.c

20 tháng 7 2020

Ta có :

\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}-\frac{c}{d}< 0\Leftrightarrow\frac{ad-bc}{bd}< 0\)

Mà \(b>0;d>0\Rightarrow bd>0\)

Vậy  \(\frac{ad-bc}{bd}< 0\Leftrightarrow ad-bc< 0\) 

\(\Rightarrow ad< bc\left(đpcm\right)\)

20 tháng 7 2020

Ta có : \(\frac{a}{b}< \frac{c}{d}\)

Mà \(\frac{ad}{bd}< \frac{bc}{bd}\)Khử mẫu : \(ad< bc\)

\(\Rightarrow ad-bc< 0\)Ta có đpcm 

8 tháng 9 2017

Bài làm

- Xét a(b+2001)=ab+2001a

        b(a+2001)=ab+2001b

- Ta xét 3 trường hợp sau:

+Nếu a>b =>2001a>2001b

                 =>a(b+2001)>b+(a+2001)

                 =>a/b > a+2001/b+2001

+Nếu a<b =>2001a<2001b

                 =>a(b+2001)<b+(a+2001)

                 =>a/b < a+2001/b+2001

+Nếu a=b =>a/b = a+2001/b+2001

8 tháng 9 2017

a, Ta có: \(\hept{\begin{cases}\frac{a}{b}=\frac{ad}{bd}\\\frac{c}{d}=\frac{bc}{bd}\end{cases}}\)

Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)

b, Ta có: \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow\frac{a}{b}< \frac{c}{d}\)

29 tháng 6 2020

Bài làm:

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow\frac{ad}{ac}< \frac{bc}{ac}\Leftrightarrow\frac{d}{c}< \frac{b}{a}\)

Học tốt!!!!

7 tháng 6 2016

18/31 giữ nguyên . 181818/313131=18 nhân 10101/31 nhân 10101 = 18/31

18/31=181818/313131

18 tháng 6 2017

Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ad+cd< bc+dc\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) (1)

\(ad< bc\)

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (2)

Từ (1), (2) \(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\left(đpcm\right)\)

18 tháng 6 2017

Ta có :

\(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ad+ab< bc+ab\Rightarrow a\left(d+b\right)< b\left(c+a\right)\)

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(1\right)\)

Lại có :

\(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\rightarrowđpcm\)

23 tháng 8 2017

bài này tôi giải 2 câu thành 1 câu

Ta có :a/b=a.d/b.d ; c/d=b.c/b.d

vì b>0 , d>0 nên b.d>0, do đó :

nếu a/b<c/d thì a.d/d.b < b.c/b.d => a/b<c/d<=>a.d<b.c

23 tháng 8 2017

Bài làm

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)