Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)và \(x+y\ge2.\sqrt{xy}\)( dấu ''='' xảy ra ở 2 bđt này khi x=y )
Ta có \(B=\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}\ge\frac{4}{a+b}+\frac{2}{a+b}=\frac{6}{a+b}\)
\(=\frac{6}{a+b}+\frac{3\left(a+b\right)}{2}-\frac{3.\left(a+b\right)}{2}\ge2\sqrt{\frac{6}{a+b}.\frac{3\left(a+b\right)}{2}}-\frac{3.2.\sqrt{ab}}{2}\)
\(=2\sqrt{9}-3.\sqrt{ab}=6-3=3\)
Dấu ''='' xảy ra khi \(\hept{\begin{cases}\frac{6}{a+b}=\frac{3.\left(a+b\right)}{2}\\a=b\\a.b=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{6}{2a}=\frac{3.2a}{2}\\a=b\\a.b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}12a^2=12\\a=b\\a.b=1\end{cases}}\)\(\Leftrightarrow a=b=1\)
Ta thấy \(ab\le\dfrac{a^2+b^2}{2}=1\) và \(a+b\le\sqrt{2\left(a^2+b^2\right)}=2\). Áp dụng BĐT B.C.S, ta được \(P=\dfrac{a^4}{ba^2+a^2}+\dfrac{b^4}{ab^2+b^2}\) \(\ge\dfrac{\left(a^2+b^2\right)^2}{ba^2+ab^2+a^2+b^2}=\dfrac{2^2}{ab\left(a+b\right)+2}\ge\dfrac{4}{1.2+2}=1\)
ĐTXR \(\Leftrightarrow a=b=1\)
Vậy GTNN của P là 1 khi \(a=b=1\)
Áp dụng bđt : 1/a + 1/b >= 4/a+b thì :
p = 1/a + 1/b >= 4/a+b >= 4/\(2\sqrt{2}\)= \(\sqrt{2}\)
Dấu "=" xảy ra <=> a=b=\(\sqrt{2}\)
Vậy ...............
Tk mk nha
\(Q=\dfrac{2002}{a}+\dfrac{2017}{b}+2996a-5501b=\left(\dfrac{2002}{a}+8008a\right)+\left(\dfrac{2017}{b}+2017b\right)-\left(5012a+7518b\right)\)
\(=\left(\dfrac{2002}{a}+8008a\right)+\left(\dfrac{2017}{b}+2017b\right)-2506\left(2a+3b\right)\)
Áp dụng bất đẳng thức Cosi cho 2 số dương:
\(\left\{{}\begin{matrix}\dfrac{2002}{a}+8008\ge2\sqrt{\dfrac{2002}{a}.8008}=8008\\\dfrac{2017}{b}+2017b\ge2\sqrt{\dfrac{2017}{b}.2017b}=4034\end{matrix}\right.\)
Ta có: \(2a+3b=4\Rightarrow-\left(2a+3b\right)=-4\Leftrightarrow-2506\left(2a+3b\right)=-10024\)
\(\Rightarrow Q\ge8008+4034-10024=2018\)
\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\)
Áp dụng bất đẳng thức trên ta có ( 1 + a 2 ) ( 1 + b 2 ) ≥ 1 + a b = 1 + a + b (1)
Với mọi x, y > 0, áp dụng bất đẳng thức Côsi cho 2 số dương ta có:
1 x + 1 y ( x + y ) ≥ 2 1 x . 1 y .2 x y = 4 ⇒ 1 x + 1 y ≥ 4 x + y (2)
Áp dụng (1) và (2) ta có:
P ≥ 4 a 2 + 2 a + b 2 + 2 b + 1 + a + b = 4 a 2 + b 2 + 2 a b + 1 + a + b = 4 ( a + b ) 2 + a + b 8 + 7 ( a + b ) 8 + 1
Áp dụng bất đẳng thức Côsi cho 2 số dương ta có:
a + b = a b ≤ ( a + b ) 2 4 ⇒ ( a + b ) 2 ≥ 4 ( a + b ) ⇒ a + b ≥ 4
Áp dụng bất đẳng thức Côsi cho 2 số dương ta có:
4 ( a + b ) 2 + a + b 16 + a + b 16 ≥ 3 4 ( a + b ) 2 . a + b 16 . a + b 16 3 = 3 4 ⇒ P ≥ 3 4 + 7 8 .4 + 1 = 21 4
Dấu bằng xảy ra khi a = b = 2. Vậy giá trị nhỏ nhất của P là 21/4
\(P=2\Sigma a+\Sigma\dfrac{1}{a}=\Sigma a+\Sigma a+\Sigma\dfrac{1}{a}\ge3.\sqrt[3]{\left(\Sigma a\right)^2.\Sigma\dfrac{1}{a}}\)
\(Q=\left(\Sigma a\right)^2.\Sigma\dfrac{1}{a}=\left(3+2\Sigma ab\right).\Sigma\dfrac{1}{a}=3\Sigma\dfrac{1}{a}+4\Sigma a+2\Sigma\dfrac{ab}{c}\ge3\Sigma\dfrac{1}{a}+6\Sigma a=3\left(\Sigma\dfrac{1}{a}+2\Sigma a\right)=3P\)\(\Rightarrow\)\(P\ge3\sqrt[3]{3P}\) \(\Leftrightarrow P^3\ge81P\Leftrightarrow P^2\ge81\left(P>0\right)\Leftrightarrow P\ge9\)
" = " \(\Leftrightarrow a=b=c=1\)
Vì $\large a,b,c \in\mathbb{N^*}$ và $\large a^2+b^2+c^2=3\Rightarrow \left\{\begin{matrix} a<\sqrt{3} & \\ b<\sqrt{3} & \\ c<\sqrt{3} & \end{matrix}\right.$
Ta chứng minh bất đẳng thức phụ sau:
Với $0 <x<\sqrt{3}$ thì $2x+\frac{1}{x} \ge x^2.\frac{1}{2}+\frac{5}{2}(*)$
Thật vậy $(*)$ $\large \Leftrightarrow (x-2)(x-1)^2 \le0$
Do $\large x<\sqrt{3}\Leftrightarrow x<2\Leftrightarrow (x-2)(x-1)^2<0$ (Luôn đúng)
Do đó bất đẳng thức được chứng minh
Dấu $"="$ xảy ra khi $x=1$
Trở lại bài toán:
Áp dụng BĐT $(*)$ ta được:
$\large 2a+\frac{1}{a}+2b+\frac{1}{b}+2c+\frac{1}{c}\ge\frac{1}{2}(a^2+b^2+c^2)+\frac{15}{2}=9$
Do $a^2+b^2+c^2=3$
Vậy $GTNN=9$
Dấu $"="$ xảy ra khi: $a=b=c=1$
trình bày đầy đủ :
Ta có BĐT sau: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)( x,y >0 )
CM: \(\Leftrightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)
Áp dụng bđt cô si cho 2 số dương x,y ta có:
\(x+y\ge2\sqrt{xy}\)
\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\)
\(\Rightarrow\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\)( đúng )
Áp dụng bđt trên ta có:
\(P=\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\ge\frac{4}{2\sqrt{2}}=\sqrt{2}\)
Dấu "=" xảy ra <=> \(a=b=\sqrt{2}\)
Vậy MIN P= \(\sqrt{2}\)\(a=b=\sqrt{2}\)
\(bđtcosi\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\ge\frac{4}{2\sqrt{2}}=\sqrt{2}\)
Dấu = xảy ra <=> a=b=\(\sqrt{2}\)
Min P=\(\sqrt{2}\)<=>a=b=\(\sqrt{2}\)