Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử: d=(m+n,m2+n2)d=(m+n,m2+n2)
⇒⎧⎨⎩m+n⋮dm2+n2⋮d⇒{m+n⋮dm2+n2⋮d
⇒⎧⎨⎩m+n⋮d(m+n)2−2mn⋮d⇒{m+n⋮d(m+n)2−2mn⋮d
⇒⎧⎨⎩m+n⋮d2mn⋮d⇒{m+n⋮d2mn⋮d
⇒⎧⎨⎩2m(m+n)−2mn⋮d2n(m+n)−2mn⋮d⇒{2m(m+n)−2mn⋮d2n(m+n)−2mn⋮d
⇒⎧⎨⎩2m2⋮d2n2⋮d⇒{2m2⋮d2n2⋮d
d|(2m2,2n2)=2(m2,n2)=2d|(2m2,2n2)=2(m2,n2)=2
⇒d=1⇒d=1 hoặc d=2d=2
- Nếu m,nm,n cùng lẻ thì d=2d=2
- Nếu m,nm,n khác tính chẵn lẻ thì d=1
Với A là một tập con của tập hợp {1;2;...;2014} thỏa mãn yêu cầu đề bài toán, gọi a là phần tử nhỏ nhất của A
Xét \(b\in A,b\ne a\) ta có b>a và \(\frac{a^2}{b-a}\ge a\Rightarrow b\le2a\)(1)
Gọi c,d là phần tử lớn nhất trong A, c<d từ (1) ta có: \(d\le2a\le2c\left(2\right)\)
Theo giả thiết \(\frac{c^2}{d-c}\in A\). Mặt khác do (2) nên \(\frac{c^2}{d-c}\ge\frac{c^2}{2c-c}\ge c\Rightarrow\frac{c^2}{d-c}\in\left\{c;d\right\}\)
Xét các trường hợp sau:
- Trường hợp 1: \(\frac{c^2}{d-c}=d\)trong trường hợp này ta có: \(\frac{c}{d}=\frac{-1+\sqrt{5}}{2}\) mâu thuẫn với \(c,d\inℤ^+\)
- Trường hợp 2: \(\frac{c^2}{d-c}=c\)trong trường hợp này ta có: d=2c. Kết hợp với (2) => c=d và d=2a
Do đó: A={a;2} với a=1;2;...;1007. Các tập hợp trên đều thỏa mãn yêu cầu đề bài
Vậy có tất cả 1007 tập hợp thỏa mãn
buithianhtho, Vũ Minh Tuấn, Băng Băng 2k6, No choice teen, Akai Haruma, Nguyễn Thanh Hằng, Duy Khang,
@tth_new, @Nguyễn Việt Lâm, @Nguyễn Thị Ngọc Thơ, @Nguyễn Huy Thắng
Mn giúp e vs ạ! Cần gấp ạ!
Thanks nhiều lắm ạ!
Đề đúng (Hậu Giang 2013-2014) :Cho \(a^3+3ab^2=2014\)và \(b^3+3a^2b=2013\).Tính \(P=a^2-b^2\)
Ta có:
\(\left(a+b\right)^3=a^3+b^3+3a^2b+3ab^2=\left(a^3+3ab^2\right)+\left(b^3+3a^2b\right)=2014+2013=4027\)
\(\Rightarrow a+b=\sqrt[3]{4027}\)
\(\left(a-b\right)^3=a^3+3ab^2-\left(b^3+3a^2b\right)=2014-2013=1\)
\(\Rightarrow a-b=1\)
do đó \(P=a^2-b^2=\left(a+b\right)\left(a-b\right)=1.\sqrt[3]{4027}=\sqrt[3]{4027}\)
Giả sử \(2^{2014}\) có x chữ số và \(5^{2014}\) có y chữ số
\(\Rightarrow\) Số viết liền của a và b có \(x+y\) chữ số
Theo đề bài ta có
\(10^{x-1}< 2^{2014}< 10^x\\ 10^{y-1}< 5^{2014}< 10^y\)
\(\Rightarrow10^{x-1}\cdot10^{y-1}< 2^{2014}\cdot5^{2014}< 10^x\cdot10^y\\ \Rightarrow10^{x+y-2}< 10^{2014}< 10^{x+y}\\ \Rightarrow x+y-2< 2014< x+y\\ \Rightarrow2014< x+y< 2016\\ \Rightarrow x+y=2015\)
Vậy số tạo bởi a và b có 2015 cs