Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 12: cho hai lực đồng quy có độ lớn F1 = 16N; F2 = 12N. Cho độ lớn của hợp lực là 20N. Góc giữa hai lực là
A. 0
B. 60o
C. 90o
D. 120o
Trong phép tổng hợp hai lực thì hai lực thành phần cùng với hợp lực tạo thành một hình tam giác. Độ lớn của các lực biểu diễn bằng độ dài của các cạnh tam giác đó.
Từ định lí hàm số cosin đối với tam giác, áp dụng cho trường hợp này ta có góc giữa hai lực đồng quy xác định bởi:
a:
Gọi hai lực đồng quy đề bài cho lần lượt là \(\overrightarrow{F_1};\overrightarrow{F_2}\)
Gọi hợp lực của \(\overrightarrow{F_1};\overrightarrow{F_2}\) là \(\overrightarrow{F}\)
Do đó, ta có: \(\overrightarrow{F}=\overrightarrow{F_1}+\overrightarrow{F_2}\)
=>\(\left|\overrightarrow{F}\right|=\sqrt{F_1^2+F_2^2+2\cdot F_1\cdot F_2\cdot cos\left(\overrightarrow{F_1},\overrightarrow{F_2}\right)}\)
=>\(F=\sqrt{18^2+24^2+2\cdot18\cdot24\cdot cos25}\simeq41,02\left(N\right)\)
b: \(F=31N\)
=>\(\sqrt{F_1^2+F_2^2+2\cdot F_1\cdot F_2\cdot cos\left(\overrightarrow{F_1};\overrightarrow{F_2}\right)}=31\)
=>\(900+2\cdot18\cdot24\cdot cos\left(\overrightarrow{F_1};\overrightarrow{F_2}\right)=961\)
=>\(864\cdot cos\left(\overrightarrow{F_1};\overrightarrow{F_2}\right)=61\)
=>\(cos\left(\overrightarrow{F_1};\overrightarrow{F_2}\right)=\dfrac{61}{864}\)
=>\(\left(\overrightarrow{F_1};\overrightarrow{F_2}\right)\simeq86^0\)
Chọn D.
Theo định lý hàm số cosin:
F 2 = F 1 2 + F 2 2 - 2 F 1 F 2 cos ( π - α )
Ta thử đáp án là cách nhanh nhất nhé!
Thay vào công thức:
\(F=\sqrt{F_1^2+F_2^2+2\cdot F_1\cdot F_2\cdot cos\alpha}\)
Lần lượt thay ta đc đáp án B thỏa man nhé:
\(F=\sqrt{16^2+12^2+2\cdot16\cdot12\cdot cos90^o}=20N\)
Chọn B