Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chú ý: câu a kẻ luôn tia Oa'' là tia đối của Oa!
a/ Ta có: \(\widehat{a''Ob}+\widehat{bOa}=180\) độ (kề bù)
\(\Rightarrow\widehat{a''Ob}+120=180\)
\(\Rightarrow\widehat{a''Ob}=180-120=60\)độ (1)
Ta lại có: \(\widehat{a''Oc}+\widehat{cOa}=180\)độ (kề bù)
\(\Rightarrow\widehat{a''Oc}+120=180\)
\(\Rightarrow\widehat{a''Oc}=180-120=60\)độ (2)
Từ (1),(2) ta có: \(\widehat{bOc}=120\)độ
Vậy: \(\widehat{aOb}=\widehat{aOc}=\widehat{bOc}\left(đpcm\right)\)
b) Vì đã tính ở câu a hết trơn nên câu này nhẹ nhàng lắm.
\(Oa''\)là phân giác \(\widehat{bOc}\)vì
+ \(Oa\)nằm giữa 2 tia \(Ob;Oc\)
+ \(\widehat{a''Ob}=\widehat{a''Oc}=\frac{\widehat{bOc}}{2}\)
Ps: Check lại coi có sai sót gì ko nha
a)Ta có: hai tia On và Óc cùng thuộc một nửa mặt phẳng chứa tia Oa
Mà aOb<aOc(60o <120o)
=} Tia Ob nằm giữa hai tia Oa và Ob (1)
=} aOb + boc=aOc
Mà aOb =60o,aOc=120
=}Boc=120o-60o=60o(2)
Vậy bOc=60o
a) Trên cùng một nửa mặt phẳng bờ chứa tia Oa, ta có: \(\widehat{aOb}< \widehat{aOc}\left(60^0< 120^0\right)\)
nên tia Ob nằm giữa hai tia Oa và Oc
\(\Leftrightarrow\widehat{aOb}+\widehat{bOc}=\widehat{aOc}\)
\(\Leftrightarrow\widehat{bOc}+60^0=120^0\)
hay \(\widehat{bOc}=60^0\)
Vậy: \(\widehat{bOc}=60^0\)
a) A O C ^ = 130°.
b) Tia OA nằm giữa hai tia OB và OD vì trên cùng một nửa mặt phẳng bờ có chứa tia OB ta có B O D ^ > B O A ^
c) Tia OA là tia phân giác của B O D ^ vì tia OA nằm giữa hai tia OB,OD và A O D ^ = A O B ^
a) A O C ^ = 130 °
b) Tia OA nằm giữa hai tia OB và OD vì trên cùng một nửa mặt phẳng bờ có chứa tia OB ta có B O D ^ > B O A ^
c) Tia OA là tia phân giác của B O D ^ vì tia OA nằm giữa hai tia OB,OD và A O D ^ = A O B ^
tự kẻ hình nghen:3333
a)ta có aOc=aOb+bOc
=> bOc=aOc-aOb
=> bOc=80 -60=20 độ
b) vì Om là p/g của aOc=> aOm=mOc=80/2= 40 độ
vì mOb+bOc=mOc=40 độ=> mOb=40-20=20 độ
=> mOb=bOc=20 độ=> Om là p/g của cOm
c)vì Oa là tia đối của Oy=> aOy=180 độ
ta có aOy= aOm+mOy
mà aOm=yOn= 40 độ
=> mOy+yOn= 180 độ
=> mOn= 180 độ
=> Om là tia đối của On