Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì : \(\overrightarrow{MN}=\overrightarrow{OA}\Rightarrow T_{\overrightarrow{OA}}:M\rightarrow N\). Do đó N nằm trên đường tròn ảnh của (O;R) . Mặt khác N lại nằm trên (O’;R’) do đó N là giao của đường tròn ảnh với với (O’;R’) . Từ đó suy ra cách tìm :
- Vè đường tròn tâm A bán kính R , đường tròn náy cắt (O’;R’) tại N
- Kẻ đường thẳng d qua N và song song với OA , suy ra d cắt (O;R) tại M
Ta có vecto MM' + vecto MA = vecto MB
=> MM'BA là hình bình hành
vì A , B cố định => vecto AB cố định
xét phép tịnh tiến qua vecto AB biến M => M'
=> vecto MM' = vecto AB
=> M' là ảnh của M
Mặt khác điểm M chạy trên đường tròn (O) nên M' sẽ chạy trên đường tròn (O') là ảnh của
(O) thông qua phép tịnh tiến vecto AB
Vậy quỹ tích M' là đường tròn (O')
ta có : \(\overrightarrow{MM'}+\overrightarrow{MA}=\overrightarrow{MB}\Leftrightarrow\overrightarrow{MM'}=\overrightarrow{MB}-\overrightarrow{MA}=\overrightarrow{AB}\)
mà \(M\in\left(O\right)\Rightarrow M'\in\left(O'\right)\) với \(\left(O'\right)=T_{\overrightarrow{AB}}\left(O\right)\)
vậy tập hợp điểm \(M\) là đường tròn \(\left(O'\right)\) với \(\left(O'\right)\) là ảnh của đường tròn \(\left(O\right)\) qua \(T_{\overrightarrow{AB}}\)
Đáp án B.
Kẻ
Vẽ O'H ⊥ A'B thì H là trung điểm của A'B.
∆ O'A'H vuông tại H nên
Đáp án D
Chọn hệ trục tọa độ như hình vẽ ⇒ pt đường tròn đáy là:
Hình chiếu của phần elip xuống đáy là miền gạch chéo như hình vẽ
Gọi diện tích phần elip cần tính là S’. theo công thức hình chiếu ta có
Ta thực hiện như sau:
Dựng \(\Delta'=Đ_1\left(\Delta\right)\)và giả sử \(\Delta'\) cắt \(\left(O;R\right)\) tại \(A\)
Nối \(IA\) cắt \(\Delta\) tại \(B\)
Khi đó \(I\) là trung điểm của đoạn thẳng \(AB\)
Bài toán chỉ có nghiệm khi đường thẳng \(\Delta'\)cắt đường tròn \(\left(O;R\right)\)
Đáp án B
Gọi I là trung điểm BCH’ đối xứng với H qua I
( CH’ // BH do HBH’C là hình bình hành)
⇒ H ' C H ^ + H C M ^ = C H M ^ + H C M ^ = 90 o
(Cách chứng minh khác: Ta có C H ⊥ A B
Mà H’B//CH
⇒ H ' B ⊥ A B ⇒ H ' B C ^ = 90 o ⇒ H ' ∈ ( O )
Đ I : O-> O’
⇒ O H ' = O ' H
H thuộc đường tròn (O’; R)
Gọi (C) là đường tròn tâm O bán kính r, \(\left(C_1\right)\) là đường tròn tâm O bán kính R. Giả sử đường thẳng đã dựng được. Khi đó có thể xem D là ảnh của B qua phép đối xứng qua tâm A. Gọi (C') là ảnh của (C) qua phép đối xứng qua tâm A, thì D thuộc giao của (C') và \(\left(C_1\right)\).
Số nghiệm của bài toán phụ thuộc vào số giao điểm của (C') và \(\left(C_1\right)\).
- Giả sử ta lấy điểm M trên (O;R). Theo giả thiết , thì M’ là ảnh của M qua phép tịnh tiến theo véc tơ \(\overrightarrow{AB}\). Nhưng do M chạy trên (O;R) cho nên M’ chạy trên đường tròn ảnh của (O;R) qua phép tịnh tiến . Mặt khác M’ chạy trên (O’;R’) vì thế M’ là giao của đường tròn ảnh với đường tròn (O’;R’).
- Tương tự : Nếu lấy M’ thuộc đường tròn (O’;R’) thì ta tìm được N trên (O;R) là giao của (O;R) với đường tròn ảnh của (O’;R’) qua phép tịnh tiến theo véc tơ \(\overrightarrow{AB}\)
- Số nghiệm hình bằng số các giao điểm của hai đường tròn ảnh với hai đường tròn đã cho .