K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

mình mới học lớp 7 nhưng chỉ biết câu a sai thì thôi nhé ac=ad vì cái kia = cái này mà cái này = cái kia bạn chỉ cần nói với cô như vậy.Thôi nha

2 tháng 8 2017

a/ Gọi E, F lần lược là trung điểm của AD, AC

\(\Rightarrow AI\)là đường trung bình của hình thang \(OFEO'\)

\(\Rightarrow AE=AF\)

\(\Rightarrow AD=AC\)

b/ Gọi G là giao điểm của AB với OO'

\(\Rightarrow IG\)là đường trung bình của \(\Delta ABK\)

\(\Rightarrow\)IG // BK

Mà \(IG⊥AB\)

\(\Rightarrow BK⊥AB\)

PS: Bạn vẽ hộ cái hình nhé

7 tháng 1 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

Ta có OO' là đường nối tâm của (O) và (O') nên OO' là đường trung trực của AB.

Suy ra IE ⊥ AB và EA = EB

Ta lại có IA = IK (do K là điểm đối xứng của A qua I).

Nên IE là đường trung bình của tam giác AKB.

Suy ra IE // KB

Mà IE ⊥ AB

Suy ra KB ⊥ AB (đpcm)

16 tháng 1 2018

Để học tốt Toán 9 | Giải bài tập Toán 9Kẻ OM ⊥ AD.

Theo tính chất đường kính vuông góc với một dây, ta có: MA = MC

Tương tự, kẻ O'N ⊥ AD => NA = ND.

Ta có:


Vậy tứ giác OMNO' là hình thang vuông.

Ta còn có: IO = IO' (gt) và IA // OM

Do đó IA là đường trung bình của hình thang OMNO'.

=> AM = AN hay 2AM = 2AN

Hay AC = CD (đpcm)

a: Xét tứ giác ODAE có

góc ODA+góc OEA=180 độ

=>ODAE là tứ giác nội tiếp

b: \(AE=\sqrt{\left(3R\right)^2-R^2}=2\sqrt{2}\cdot R\)

\(OI=\dfrac{OE^2}{OA}=\dfrac{R^2}{3R}=\dfrac{R}{3}\)

c: Xét ΔDIK vuông tại I và ΔDHE vuông tại H có

góc IDK chung

=>ΔDIK đồng dạng vơi ΔDHE

=>DI/DH=DK/DE

=>DH*DK=DI*DE=2*IE^2

8 tháng 1 2019

@Thiện Nhân@Thiên Thảo@Guyo@Nguyễn Văn Toàn@Sky SơnTùng

20 tháng 12 2022

b: Gọi H là giao của AB và OO'

=>OO' vuông góc với AB tại H và H là trung điểm của AB

Xét ΔABK có AH/AB=AM/AK

nên HM//BK

=>BK vuông góc với AB

c: Xét (O) có

ΔABE nội tiếp

AE là đường kính

Do đó: ΔABE vuông tại B

Xét (O') có

ΔAKF nội tiếp

AF là đương kính

Do đó: ΔAKF vuông tại K

Xét (O') có

ΔABF nội tiếp

AF là đường kính

Do đó: ΔABF vuông tại B

góc ABK+góc ABE=90+90=180 độ

=>K,B,E thẳng hàng(1)

góc ABF+góc ABE=90+90=180 độ

nên B,F,E thẳng hàng(2)

Từ (1), (2) suy ra E,B,K,F thẳng hàng

=>OO'//EF

d: Xét ΔAKF có MO'//FK

nên MO'/FK=AO'/AF=1/2

Xét ΔAEK có OM//EK

nên OM/EK=AO/AE=1/2

=>OM/EK=O'M/FK

=>EK=KF
=>K là trung điểm của EF

=>

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:a) AP là phân giác của góc BAQb) CP và BR song song với nhau2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax...
Đọc tiếp

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau

2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA

3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.

4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!

0

b: Gọi giao của AB và OO' là M

=>M là trung điểm của AB và OO' vuông góc với AB tại M

Xét ΔABK có AM/AB=AI/AK

nên MI//BK

=>BK vuông góc với AB

c: 

Xét (O) có

ΔABE nội tiếp

AE là đường kính

DO đó: ΔABE vuông tại B

Xet (O') có

ΔABF nội tiếp

AF là đường kính

Do đó; ΔABF vuông tại B

=>BF vuông góc với AB

góc EBF=góc EBA+góc FBA=90+90=180 độ

=>E,B,F thẳng hàng(1)

góc ABE+góc ABK=90+90=180 độ

nên E,B,K thẳng hàng(2)

Từ (1), (2) suy ra E,B,K,F thẳng hàng