Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
IA = IB = IC
Tam giác BAC có AI là trung tuyến và AI = BC/2
⇒ Tam giác BAC vuông tại A hay ∠BAC = 90 0
Theo tính chất hai tiếp tuyến cắt nhau ta được IA = IB, IA = IC.
tam giác ABC có đường trung tuyến AI = 1/2 BC nên là tam giác vuông
vậy B A C ^ = 90 o
Ta có: IA = ID = IE (chứng minh trên)
Suy ra A nằm trên đường tròn tâm I đường kính DE
Vì OO’ ⊥ IA tại A nên OO’ là tiếp tuyến của đường tròn (I; DE/2)
a, Ta có AB = AE + BE = EM + EN
Và CD = FD + FC = NF + NE
=> AB + CD = 2EF => AB = EF
b, Ta có EM = AB – EB = EF – EN = NF
Đường tròn có đường kính BC có tâm M, bán kính MA.OO' vuông góc với MA tại A nên là tiếp tuyến của đường tròn (M).
Gọi I là trung điểm của OO', I là tâm của đường tròn có đường kính OO', IM là bán kính (vì MI là trung tuyến ứng với cạnh huyền của MOO'. IM là đường trung bình của hình thang OBCO' nên IM // OB // O'C. Do đó IM ⊥ BC.
BC vuông góc với IM tại M nên BC là tiếp tuyến của đường tròn (I).
a: Xét (O) có
ID,IA là các tiếp tuyến
Do đó: IO là phân giác của góc DIA
=>\(\widehat{DIA}=2\cdot\widehat{OIA}\)
Xét (O') có
IA,IE là các tiếp tuyến
Do đó: IO' là phân giác của góc AIE
=>\(\widehat{AIE}=2\cdot\widehat{AIO'}\)
Ta có: \(\widehat{DIA}+\widehat{EIA}=180^0\)(hai góc kề bù)
=>\(2\left(\widehat{OIA}+\widehat{O'IA}\right)=180^0\)
=>\(2\cdot\widehat{OIO'}=180^0\)
=>\(\widehat{OIO'}=90^0\)
b: Xét (O) có
ID,IA là các tiếp tuyến
Do đó: ID=IA
Xét (O') có
IA,IE là các tiếp tuyến
Do đó: IA=IE
Ta có: IA=IE
ID=IA
Do đó: ID=IE
=>I là trung điểm của DE
=>I là tâm đường tròn đường kính DE
Xét ΔDAE có
AI là bán kính
\(AI=\dfrac{DE}{2}\)
Do đó: ΔADE vuông tại A
=>A nằm trên (I)
Xét (I) có
IA là bán kính
O'O\(\perp\)IA tại A
Do đó: OO' là tiếp tuyến của (I)
=>O'O là tiếp tuyến của đường tròn đường kính DE