K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có

ΔACB nội tiếp

AB là đường kính

=>ΔACB vuông tại C

ΔOCD cân tại O

mà OI là đường cao

nên I là trung điểm của CD

=>IC=ID=CD/2=8cm

Xét ΔCAB vuông tại C cso CI là đường cao

nên CI^2=IA*IB

=>8^2=6*IB

=>IB=64/6=32/3(cm)

AB=IB+IA=32/3+6=50/3(cm)

=>R=50/3:2=25/3(cm)

27 tháng 11 2018

a, AC = 4cm => BC =  4 3 cm

=> R = 4cm => C = 8πcm, S = 16π  c m 2

b, ∆AOC đều =>  A O C ^ = 60 0

=>  C O D ^ = 120 0 => l C A D ⏜ = π . 4 . 120 180 = 8 π 3 cm

=> S =  8 π 3 . 4 2 = 16 π 3 c m 2

a) Xét ΔDAB có

DO là đường trung tuyến ứng với cạnh AB(O là trung điểm của AO)

DO là đường cao ứng với cạnh AB(gt)

Do đó: ΔDAB cân tại D(Định lí tam giác cân)

Suy ra: \(DA=DB\)(hai cạnh bên)

hay \(sđ\stackrel\frown{DA}=sđ\stackrel\frown{DB}\)

Xét (O) có 

\(\widehat{AID}\) là góc nội tiếp chắn cung AD

\(\widehat{BID}\) là góc nội tiếp chắn cung BD

mà \(sđ\stackrel\frown{DA}=sđ\stackrel\frown{DB}\)(cmt)

nên \(\widehat{AID}=\widehat{BID}\)

hay ID là tia phân giác của \(\widehat{AIB}\)(đpcm)

b) Xét (O) có 

\(\widehat{AIB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{AIB}=90^0\)(Hệ quả góc nội tiếp)

hay \(\widehat{FIB}=90^0\)

Xét tứ giác BIFO có 

\(\widehat{FOB}\) và \(\widehat{FIB}\) là hai góc đối

\(\widehat{FOB}+\widehat{FIB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BIFO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

hay B,I,F,O cùng thuộc 1 đường tròn(đpcm)

21 tháng 12 2020

PS. Em đã làm được rồi ạ.

NV
21 tháng 12 2020

\(ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

\(\left\{{}\begin{matrix}\widehat{ACB}+\widehat{BCH}=90^0\\\widehat{CBH}+\widehat{BCH}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{ACB}=\widehat{CBH}\)

\(\Rightarrow\widehat{ABC}=\widehat{CBH}\)