Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{xOy}+\widehat{x'Oy=180^0}\) (Vì \(\widehat{xOy}\) và \(\widehat{x'Oy}\) là hai góc kề bù)
\(\widehat{xOy}-\widehat{x'Oy}=40^0\)
a.\(\widehat{xOy}=\left(180^0+40^0\right):2=110^0\)
\(\widehat{x'Oy'}=\widehat{xOy}=110^0\) ( 2 góc đối đỉnh)
b. \(\widehat{x'Oy}=180^0-\widehat{xOy}=180^0-110^0=70^0\) (2 góc kề bù)
\(\widehat{xOy'}=\widehat{x'Oy}=70^0\) ( 2 góc đối đỉnh)
Vì xOy kề bù x'Oy
=> xOy + x'Oy = 180
xOy - x'Oy = 30
=> xOy = 105
=> x'Oy = 75
Vì xx' cắt yy' tại O
=> xOy = x'Oy' = 105 ( đối đỉnh )
=> x'Oy = xOy' = 75 ( đối đỉnh )
Ta có:
góc O1 - góc O2 = 30 độ
+
góc O1 + góc O2 = 180 độ (kề bù)
______________________
\(2\widehat{O_1}=210^o\)
=> góc O1 = 105 độ
Có: góc O1 - góc O2 = 30 độ
=> góc O2 = góc O1 - 30 độ = 105 độ - 30 độ = 75 độ
Lại có góc O1 = góc O3 = 105 độ (đối đỉnh)
góc O2 = góc O4 = 75 độ (đối đỉnh)
Ta có:
xx' và yy' cắt nhau tại O -> góc xOy' đối đỉnh với góc x'Oy
mà góc xOy'=63 độ (đối đỉnh thì bằng nhau)
Vậy góc x'Oy= 63 độ
ta có: xx' và yy' cắt nhau tại O
=> góc xOy' = góc x'Oy = 63 độ ( đối đỉnh)
=> góc x'Oy = 63 độ
Giải
_ Ta có \(\widehat{xOy}=\widehat{x'Oy'}=40^0\)( đối đỉnh) => \(\widehat{xOm}=\widehat{mOy}=\widehat{y'On}=\widehat{nOx'}=\frac{40^0}{2}=20^0\)
_ \(\widehat{x'Oy}=\widehat{xOy'}=180^0-40^0=140^0\)
Vì xOy và xOy' là 2 góc kề bù
=> xOy + xOy' = 180*
Thay xOy = 60*
=> xOy' = 180* - 60*
xOy' = 120*
Vì xx' và yy' cắt nhau tại O
=> xOy và x'Oy' là 2 góc đối đỉnh mà xOy = 60*
=> xOy = x'Oy' = 60*
Vì x'Oy là góc đối đỉnh của xOy' mà xOy' = 120*
=> x'Oy = 120*
Tính rõ rồi nha bạn, nếu cần chứng minh 2 góc đối đỉnh, lm đầy đủ hơn nữa thì bảo mik, cn như này là cx đc điểm tối đa òi
Ta có:
Do \(\widehat{xOy}\) và \(\widehat{xOy'}\) là 2 góc kề bù
\(\Rightarrow\)\(\widehat{xOy}\) + \(\widehat{xOy'}\) = 180o
\(\Rightarrow\)60o + \(\widehat{xOy'}\) = 180o
\(\Rightarrow\)\(\widehat{xOy'}\) = 180o - 60o = 120o
Vậy \(\widehat{xOy'}\)= 120o
Ta có:
Do \(\widehat{xOy}\)và góc \(\widehat{x'Oy'}\) là 2 góc đối đỉnh
\(\Rightarrow\)\(\widehat{xOy}=\widehat{x'Oy'}=60^o\)
Ta có:
Do \(\widehat{xOy}\) và \(\widehat{x'Oy}\) là 2 góc kề bù
\(\Rightarrow\widehat{xOy}+\widehat{x'Oy}=180^o\)
\(\Rightarrow60^o+\widehat{x'Oy}=180^o\)
\(\Rightarrow\widehat{x'Oy}=180^o-60^o=120^o\)
Vậy \(\widehat{x'Oy=120^o}\)
Hoặc bạn có thể giải bằng cách này thì ngắn gọn hơn
Ta có:
Do \(\widehat{xOy'}\) và \(\widehat{x'Oy}\) là hai góc đối đỉnh
\(\Rightarrow\widehat{xOy'}=\widehat{x'Oy}=120^o\)
Vậy \(\widehat{x'Oy}=120^o\)