Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình đường thẳng có dạng : \(y=ax+b\left(a\ne0\right)\)
Đường thẳng đi qua \(A\left(1;1\right)\Rightarrow1=a+b\)
Mà đường thẳng cắt (d2) tạo thành tam giác vuông
\(\Rightarrow4a=-1\Rightarrow a=-\dfrac{1}{4}\)
Ta có pt : \(1=b-\dfrac{1}{4}\Leftrightarrow b=\dfrac{5}{4}\)
Vậy phương trình đường thẳng là \(y=-\dfrac{1}{4}x+\dfrac{5}{4}\)
a: (d): 2kx+(k-1)y=2
=>(k-1)y=2-2kx
\(\Leftrightarrow y=x\cdot\dfrac{-2k}{k-1}+\dfrac{2}{k-1}\)
Để hai đường song song thì \(-\dfrac{2k}{k-1}=\sqrt{3}\)
=>\(2k=-\sqrt{3}k+\sqrt{3}\)
=>\(k\left(2+\sqrt{3}\right)=\sqrt{3}\)
=>\(k=\sqrt{3}\left(2-\sqrt{3}\right)\)
b: \(d\left(O;d\right)=\dfrac{\left|0\cdot2k+0\cdot\left(k-1\right)-2\right|}{\sqrt{\left(2k\right)^2+\left(k-1\right)^2}}=\dfrac{2}{\sqrt{\left(4k^2+k^2-2k+1\right)}}\)
Để d lớn nhất thì \(\sqrt{5k^2-2k+1}_{MIN}\)
\(\Leftrightarrow A=5k^2-2k+1_{MIN}\)
A=5(k^2-2/5k+1/5)
=5(k^2-2/5k+1/25+4/25)
=5(k-1/5)^2+4/5>=4/5
Dấu = xảy ra khi k=1/5
theo dg thẳng x=(4m+1)/(2m+1);y=-4m-1
Ta có Khoảng cách từ dg thẳng đến A là
căn((4m+1)/(2m+1)+2)^2+(-4m-1-3)^2)
tự khai ra giải pt