K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

M A B C D

+) Ta có :

\(AMC+CMB=180^0\) (kề bù)

\(BMC=3.CMA\)

\(\Leftrightarrow CMA+3CMA=180^0\)

\(\Leftrightarrow CMA.\left(1+3\right)=180^0\)

\(\Leftrightarrow CMA.4=180^0\)

\(\Leftrightarrow CMA=45^0\)

\(\Leftrightarrow BMC=135^0\)

+) Ta có :

\(AMC=BMD\) (đối đỉnh)

\(AMC=45^0\)

\(\Leftrightarrow BMD=45^0\)

+) Ta có :

\(BMC=AMD\) (đối đỉnh)

\(BMC=135^0\)

\(\Leftrightarrow AMD=135^0\)

22 tháng 7 2017

BMC = 3 CMA, hình vẽ sai

5 tháng 7 2021

Có \(\widehat{CMA}+\widehat{CMB}=180^0\) (Hai góc kề bù)

\(\Leftrightarrow5\widehat{CMA}+\widehat{CMA}=180^0\Leftrightarrow\widehat{CMA}=30^0\)

\(\Rightarrow\widehat{BMC}=5.30^0=150^0\)

Có \(\widehat{CMA}+\widehat{AMD}=180^0\) 

\(\Leftrightarrow\widehat{AMD}=180^0-30^0=150^0\)

Có \(\widehat{DMB}=\widehat{AMC}=150^0\) (Hai góc đối đỉnh)

Vậy...

5 tháng 7 2021

\(\widehat{DMB}=\widehat{AMC}=30^0\) nhá

6 tháng 9 2019

M A B C D
Ta có: \(\widehat{AMC}+\widehat{AMD}=180^o\)(2 góc kề bù) (1)
Mà \(\widehat{AMC}=2\widehat{AMD}\)(Đề cho) (Ngoặc ''}'' 2 điều lại)
=> \(2\widehat{AMD}+\widehat{AMD}=180^o\)
=>    \(\left(2+1\right)\widehat{AMD}=180^o\)
=>                    \(3\widehat{AMD}=180^o\)
=>                       \(\widehat{AMD}=180^o:3\)
=>                       \(\widehat{AMD}=60^o\)(2)
Từ (1) và (2) => \(\widehat{AMC}=180^o-60^o=120^o\)
Lại có: \(\widehat{AMC}=\widehat{BMD}\)(2 góc đối đỉnh) (Ngoặc ''}'' 2 điều lại)
=> \(\widehat{BMD}=120^o\)
Mặt khác: \(\widehat{AMD}=\widehat{BMC}\)(2 góc đối đỉnh)
Mà \(\widehat{AMD}=60^o\)(Theo (2)) (Ngoặc ''}'' 2 điều lại)
=> \(\widehat{BMC}=60^o\)
Vậy \(\widehat{AMC}=\widehat{BMD}=120^o\)
       \(\widehat{AMD}=\widehat{BMC}=60^o\)

6 tháng 9 2019

Hình vẽ sai số đo nên tự chỉnh lại y như đáp án nhé

7 tháng 8 2018

dùng góc đối đỉnh nha bạn

góc AOD+BOC=270 độ=>AOD=BOC=135 độ(đối đỉnh)

.....

31 tháng 7 2020

ta có:\(\widehat{aOb}\) = 180

\(\Rightarrow\)3 x \(\widehat{aOc}\)=180

\(\Rightarrow\)\(\widehat{aOc}\)=180 : 3 = 60

\(\Rightarrow\)\(\widehat{aOc}\)=\(\widehat{bOd}\)= 60 (2 góc đối đỉnh)

ta có: \(\widehat{aOc}\)+\(\widehat{cOb}\)= 180 (2 góc kề bù)

\(\Rightarrow\)60 + \(\widehat{cOb}\)= 180

\(\Rightarrow\)\(\widehat{cOb}\)= 180 - 60 = 120

\(\Rightarrow\)\(\widehat{aOd}\)=\(cOb\)= 120 (2 goc đối đỉnh)

Vậy \(\widehat{aOc}\)= 60;\(\widehat{cOb}\)= 120;\(\widehat{bOd}\)= 60;\(\widehat{aOd}\)=120

14 tháng 8 2020

cảm ơn bạn

31 tháng 8 2016

Toán lớp 7

31 tháng 8 2016

Có: \(\begin{cases}\widehat{AOD}-\widehat{BOD}=30\\\widehat{AOD}+\widehat{BOD}=180\end{cases}\)\(\Leftrightarrow\begin{cases}\widehat{AOD}=30+\widehat{BOD}\\30+\widehat{BOD}+\widehat{BOD}=180\end{cases}\)\(\Leftrightarrow\begin{cases}\widehat{AOD}=30+\widehat{BOD}\\2\widehat{BOD}=150\end{cases}\)

\(\Leftrightarrow\begin{cases}\widehat{AOD}=105\\\widehat{BOD}=75\end{cases}\)

Lại có: \(\widehat{AOC}=\widehat{BOD}=75;\widehat{BOC}=\widehat{AOD}=105\) ( cặp góc đối đỉnh)