Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao của AB và CD là O
a: AB vuông góc CD
AC^2-BC^2
=AO^2+OC^2-CO^2-BO^2
=AO^2-BO^2
=AO^2+OD^2-OD^2-OB^2
=AD^2-BD^2
b: AC^2-BC^2=AD^2-BD^2
=>AC^2-AD^2=BC^2-BD^2
=>(vecto AC)^2-(vecto AD)^2=(vecto BC)^2-(vecto BD)^2
=>(vecto AC-vecto AD)(vecto AC+vecto AD)=(vecto BC-vecto BD)(vecto BC+vecto BD)
=>vecto DC*vecto AM*2=vecto DC*vecto BM*2(M là trung điểm của DC)
=>vecto DC*vecto AB=0
=>DC vuông góc AB
a)
Từ ĐKĐB dễ thấy các tứ giác ABID,ABCK là hình bình hành do có các cặp cạnh đối song song với nhau
\(\Rightarrow AB=DI;AB=CK\Rightarrow DI=CK\Rightarrow DK=CI\)
Áp dụng định lý Ta-lét:
\(AB||DK\Rightarrow\frac{DE}{EB}=\frac{DK}{AB}\)
\(AB||CI\Rightarrow\frac{IF}{FB}=\frac{CI}{AB}\)
Maf \(CI=DK\)(cmt)
\(\Rightarrow\frac{DE}{EB}=\frac{IF}{FB}\)Theo định lý Ta-let đảo suy ra EF\(||\)CD
b)Từ các đường thẳng song song, và DI=CK=AB, áp dụng định lý Ta-let:
\(\frac{AB}{EF}=\frac{DI}{EF}=\frac{BD}{BE}=\frac{BE+ED}{BE}=1+\frac{ED}{BE}=1+\frac{DK}{AB}=1+\frac{CE-CK}{AB}=1+\frac{CD-AB}{AB}=\frac{CD}{AB}\)
\(\Rightarrow AB^2=EF.CD\)( đpcm )
Lời giải:
a)
Từ ĐKĐB dễ thấy các tứ giác $ABID, ABCK$ là hình bình hành do có các cặp cạnh đối song song với nhau
\(\Rightarrow AB=DI; AB=CK\Rightarrow DI=CK\)
\(\Rightarrow DK=CI\)
Áp dụng định lý Ta-lét:
$AB\parallel DK\Rightarrow \frac{DE}{EB}=\frac{DK}{AB}$
$AB\parallel CI\Rightarrow \frac{IF}{FB}=\frac{CI}{AB}$
Mà $CI=DK$ (cmt)
$\Rightarrow \frac{DE}{EB}=\frac{IF}{FB}$. Theo định lý Ta-let đảo suy ra $EF\parallel CD$
b)
Từ các đường thẳng song song, và $DI=CK=AB$, áp dụng định lý Ta-let:
\(\frac{AB}{EF}=\frac{DI}{EF}=\frac{BD}{BE}=\frac{BE+ED}{BE}=1+\frac{ED}{BE}=1+\frac{DK}{AB}=1+\frac{CD-CK}{AB}\)
\(=1+\frac{CD-AB}{AB}=\frac{CD}{AB}\)
\(\Rightarrow AB^2=EF.CD\) (đpcm)
Bạn tham khảo lời giải tại đây:
Câu hỏi của Gcaothu56677 - Toán lớp 8 | Học trực tuyến
Xét tam giác ABC có OE // BC . áp dụng định lý ta-lét ta có
AE/AB=AO/AC (1)
Xét tam giác ADC có OF//CD . áp dụng định lý ta-lét ta có
AF/AD=AO/AC (2)
TỪ (1)(2) suy ra AE/AB=AF/AD
Xét tam giác ABD có AE/AB=AF/AD (CMT) . áp dụng định ý ta-lét đảo ta suy ra EF//BD (đpcm)
câu b )
áp dụng định lý ta -lét cho tam giác ACD có OH//AD suy ra
CH/DH=CO/AO (3)
Aps dụng định lý ta-lét cho tam giác abc có OG//AB có
CG/GB=OC/OA (4)
TỪ (3)(4) suy ra CH/DH=CG/GB
Suy ra CH.GB=HD.CG (đpcm)
AC^2-AD^2=BC^2-BD^2
=>(vecto AC)^2-(vecto AD)^2=(vecto BC)^2-(vecto BD)^2
=>(vecto AC-vecto AD)(vecto AC+vecto AD)=(vecto BC-vecto BD)(vecto BC+vecto BD)
=>vecto DC*vecto AM*2=vecto DC*vecto BM*2(M là trung điểm của DC)
=>vecto DC*vecto AB=0
=>DC vuông góc AB