K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AC^2-AD^2=BC^2-BD^2

 

=>(vecto AC)^2-(vecto AD)^2=(vecto BC)^2-(vecto BD)^2

=>(vecto AC-vecto AD)(vecto AC+vecto AD)=(vecto BC-vecto BD)(vecto BC+vecto BD)

=>vecto DC*vecto AM*2=vecto DC*vecto BM*2(M là trung điểm của DC)

=>vecto DC*vecto AB=0

=>DC vuông góc AB

Gọi giao của AB và CD là O

a: AB vuông góc CD

AC^2-BC^2

=AO^2+OC^2-CO^2-BO^2

=AO^2-BO^2

=AO^2+OD^2-OD^2-OB^2

=AD^2-BD^2

b: AC^2-BC^2=AD^2-BD^2

=>AC^2-AD^2=BC^2-BD^2

=>(vecto AC)^2-(vecto AD)^2=(vecto BC)^2-(vecto BD)^2

=>(vecto AC-vecto AD)(vecto AC+vecto AD)=(vecto BC-vecto BD)(vecto BC+vecto BD)

=>vecto DC*vecto AM*2=vecto DC*vecto BM*2(M là trung điểm của DC)

=>vecto DC*vecto AB=0

=>DC vuông góc AB

 

6 tháng 7 2023

Cảm ơn ah nhiều ạ :D

a)

Từ ĐKĐB dễ thấy các tứ giác ABID,ABCK là hình bình hành do có các cặp cạnh đối song song với nhau

\(\Rightarrow AB=DI;AB=CK\Rightarrow DI=CK\Rightarrow DK=CI\)

Áp dụng định lý Ta-lét:

\(AB||DK\Rightarrow\frac{DE}{EB}=\frac{DK}{AB}\)

\(AB||CI\Rightarrow\frac{IF}{FB}=\frac{CI}{AB}\)

Maf \(CI=DK\)(cmt)

\(\Rightarrow\frac{DE}{EB}=\frac{IF}{FB}\)Theo định lý Ta-let đảo suy ra EF\(||\)CD

b)Từ các đường thẳng song song, và DI=CK=AB, áp dụng định lý Ta-let:

\(\frac{AB}{EF}=\frac{DI}{EF}=\frac{BD}{BE}=\frac{BE+ED}{BE}=1+\frac{ED}{BE}=1+\frac{DK}{AB}=1+\frac{CE-CK}{AB}=1+\frac{CD-AB}{AB}=\frac{CD}{AB}\)

\(\Rightarrow AB^2=EF.CD\)( đpcm ) 

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

Lời giải:

a)

Từ ĐKĐB dễ thấy các tứ giác $ABID, ABCK$ là hình bình hành do có các cặp cạnh đối song song với nhau

\(\Rightarrow AB=DI; AB=CK\Rightarrow DI=CK\)

\(\Rightarrow DK=CI\)

Áp dụng định lý Ta-lét:

$AB\parallel DK\Rightarrow \frac{DE}{EB}=\frac{DK}{AB}$

$AB\parallel CI\Rightarrow \frac{IF}{FB}=\frac{CI}{AB}$

Mà $CI=DK$ (cmt)

$\Rightarrow \frac{DE}{EB}=\frac{IF}{FB}$. Theo định lý Ta-let đảo suy ra $EF\parallel CD$

b)

Từ các đường thẳng song song, và $DI=CK=AB$, áp dụng định lý Ta-let:

\(\frac{AB}{EF}=\frac{DI}{EF}=\frac{BD}{BE}=\frac{BE+ED}{BE}=1+\frac{ED}{BE}=1+\frac{DK}{AB}=1+\frac{CD-CK}{AB}\)

\(=1+\frac{CD-AB}{AB}=\frac{CD}{AB}\)

\(\Rightarrow AB^2=EF.CD\) (đpcm)

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

Hình vẽ:

Ôn tập cuối năm phần hình học

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

Bạn tham khảo lời giải tại đây:

Câu hỏi của Gcaothu56677 - Toán lớp 8 | Học trực tuyến

25 tháng 3 2020

sorry mik ko biết nhưng hãy k cho mik

25 tháng 3 2020

Xét tam giác ABC có OE // BC . áp dụng định lý ta-lét ta có

AE/AB=AO/AC (1)

Xét tam giác ADC có OF//CD . áp dụng định lý ta-lét ta có 

AF/AD=AO/AC (2)

TỪ (1)(2) suy ra AE/AB=AF/AD 

Xét tam giác ABD có AE/AB=AF/AD (CMT) . áp dụng định ý ta-lét đảo ta suy ra EF//BD (đpcm)

câu b )

áp dụng định lý ta -lét cho tam giác ACD có OH//AD suy ra 

CH/DH=CO/AO (3)

Aps dụng định lý ta-lét cho tam giác abc có OG//AB có 

CG/GB=OC/OA (4)

TỪ (3)(4) suy ra CH/DH=CG/GB 

Suy ra CH.GB=HD.CG (đpcm)