\(f\left(x\right)=x^2+ax+b\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2017

Ta có \(f\left(1\right)+f\left(10\right)+f\left(100\right)=1+a+b+100+10a+b+10000+100a+b\)

\(=10101+111a+3b\)

Tương tự \(G\left(1\right)+G\left(10\right)+G\left(100\right)=10101+111m+3n\)

Từ đây ta có \(111a-3b=111m-3n\Rightarrow111\left(a-m\right)-3\left(b-n\right)=0\)

Xét \(h\left(x\right)=f\left(x\right)-G\left(x\right)\) , khi đó \(h\left(x_0\right)=f\left(x_0\right)-G\left(x_0\right)\)

\(=ax_0+b-mx_0-n=\left(a-m\right)x_0+\left(b-n\right)\)

Để \(h\left(x_0\right)=0\Rightarrow\left(a-m\right)x_0+\left(b-n\right)=0\Rightarrow3\left(a-m\right)x_0+3\left(b-n\right)=0\)

Ta đã có \(111a-3b=111m-3n\Rightarrow111\left(a-m\right)-3\left(b-n\right)=0\)

Vậy nên \(3x_0=111\Rightarrow x_0=37\)

Tóm lại \(f\left(37\right)=G\left(37\right)\)

15 tháng 1 2018

bổ xung định lý thứ 5

f(x)>=0 hoặc g(x)>=0 và f(x)=g(x)

AH
Akai Haruma
Giáo viên
26 tháng 10 2018

Lời giải:

a)

\(f(-3)=(-3)^2=9; f(-\frac{1}{2})=(\frac{-1}{2})^2=\frac{1}{4}\)

\(f(0)=0^2=0\)

\(g(1)=3-1=2; g(2)=3-2=1; g(3)=3-3=0\)

b)

\(2f(a)=g(a)\)

\(\Leftrightarrow 2a^2=3-a\)

\(\Leftrightarrow 2a^2+a-3=0\Leftrightarrow (2a+3)(a-1)=0\)

\(\Rightarrow \left[\begin{matrix} a=\frac{-3}{2}\\ a=1\end{matrix}\right.\)

15 tháng 6 2019

\(f\left(2\right)=5.2+1=11\)

\(f\left(-1\right)=-5+1=-4\)

\(\Rightarrow a=11+4=15\)

\(\Rightarrow g\left(1\right)=15.1+3=18\)

22 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

c) Từ kết quả câu a, b ta được bảng sau:

Để học tốt Toán 9 | Giải bài tập Toán 9

Nhận xét:

- Các hàm số y = f(x) = 2/3 x và y = g(x) = 2/3 x + 3 là hai hàm số đồng biến vì khi x tăng thì y cũng nhận được các giá trị tương ứng tăng lên.

- Cùng một giá trị của biến x, giá trị của hàm số y = g(x) luôn luôn lớn hơn giá trị tương ứng của hàm số y = f(x) là 3 đơn vị.

25 tháng 7 2018

a) Cho hàm số : \(y=f\left(x\right)=\dfrac{2}{3}x\)

Ta có : \(f\left(-2\right)=\dfrac{2}{3}.\left(-2\right)=-\dfrac{4}{3}\)

\(f\left(-1\right)=\dfrac{2}{3}.\left(-1\right)=-\dfrac{2}{3}\)

\(f\left(0\right)=\dfrac{2}{3}.0=0\)

\(f\left(\dfrac{1}{2}\right)=\dfrac{2}{3}.\dfrac{1}{2}=\dfrac{1}{3}\)

\(f\left(1\right)=\dfrac{2}{3}.1=\dfrac{2}{3}\)

\(f\left(2\right)=\dfrac{2}{3}.2=\dfrac{4}{3}\)

\(f\left(3\right)=\dfrac{2}{3}.3=2\)

b) Cho hàm số : \(y=g\left(x\right)=\dfrac{2}{3}x+3\)

\(g\left(-2\right)=\dfrac{2}{3}.\left(-2\right)+3=\dfrac{5}{3}\)

\(g\left(-1\right)=\dfrac{2}{3}.\left(-1\right)+3=\dfrac{7}{3}\)

\(g\left(0\right)=\dfrac{2}{3}.0+3=3\)

\(g\left(\dfrac{1}{2}\right)=\dfrac{2}{3}.\dfrac{1}{2}+3=\dfrac{10}{3}\)

\(g\left(1\right)=\dfrac{2}{3}.1+3=\dfrac{11}{3}\)

\(g\left(2\right)=\dfrac{2}{3}.2+3=\dfrac{13}{3}\)

\(g\left(3\right)=\dfrac{2}{3}.3+3=5\)

c) Khi \(x\)lấy cùng một giá trị thì giá trị của \(g\left(x\right)\) lớn hơn giá trị của \(f\left(x\right)\)\(3\) đơn vị.

12 tháng 6 2018

Giải:

Ta có: \(g\left(x\right)=\left(2x+1\right)^2\)

\(\Leftrightarrow g\left(3\right)=\left(2.3+1\right)^2\)

\(\Leftrightarrow g\left(3\right)=\left(6+1\right)^2\)

\(\Leftrightarrow g\left(3\right)=7^2=49\)

Ta có:

\(f\left(x\right)=2x-1\)

\(\Leftrightarrow f\left(g\left(3\right)\right)=2.49-1\)

\(\Leftrightarrow f\left(g\left(3\right)\right)=97\)

Vậy ...

13 tháng 6 2018

f(g(x))=2.(2x+1)^2-1

f(g(3))=2.(2.3+1)^2-1=97

NV
3 tháng 6 2020

\(f\left(x\right)⋮\left(x-1\right)\left(x+2\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(-2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+\left(a+b\right)+\left(2+b\right)+1=0\\-8a+4\left(a+b\right)-2\left(2+b\right)+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a+2b=-3\\-4a+2b=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=-\frac{1}{2}\end{matrix}\right.\)