Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(g\left(x\right)=-\left[\left(3x+7\right)^2-2\left(3x+7\right)+17\right]\)
\(=-\left[\left(3x+7\right)^2-2\left(3x+7\right)+1+16\right]\)
\(=-\left(3x-6\right)^2-16< 0\)
b: \(g\left(x\right)=-\left(3x-6\right)^2-16\le-16\)
Dấu '=' xảy ra khi x=2
VP \(=-\left(9x^2+42x+49\right)+6x+14-17\)
\(=-9x^2-42x-49+6x+14-17\)
\(=-9x^2-36x-52\)
\(=-\left[\left(3x\right)^2+2.3.6x+6^2+16\right]\)
\(=-\left[\left(3x+6\right)^2+16\right]\le-16,\forall x\)
Để giải thích nè:
1 ) \(\left(3x+6\right)^2\) : luôn là một số dương cho dù x có là dương hay âm đi nữa.
2 ) \(\left(3x+6\right)^2+16\) : một số dương mà cộng cho 16 thì luôn \(\ge16\) ( nếu \(\left(3x+6\right)^2=0\) thì \(\left(3x+6\right)^2+16=16\))
3 ) \(-\left[\left(3x+6\right)^2+16\right]\) : nếu thêm dấu trừ ( - ) vào một số dương >16 (lớn hơn 16) thì số đó sẽ < -16 (bé hơn -16)
Ví dụ: 100 là số dương lớn hơn , thêm dấu trừ: -100 < -16
nếu thêm dấu trừ ( - ) vào 16 thì sẽ bằng -16 : -16 = -16
VẬY KẾT LUẬN: \(-\left[\left(3x+6\right)^2+16\right]\) luôn luôn \(\le-16\) với mọi x
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a) \(g\left(x\right)=-\left(3x+7\right)^2+2\left(3x+7\right)-17\)
\(g\left(x\right)=-\left(9x^2+42x+49\right)+6x+14-17\)
\(g\left(x\right)=-9x^2-42x-49+6x+14-17\)
\(g\left(x\right)=-9x^2-36x-52=-\left(9x^2+36x+36\right)-16\)
\(g\left(x\right)=-\left(3x+6\right)^2-16\)
ta có : \(\left(3x+6\right)\ge0\) với mọi giá trị của \(x\)
\(\Rightarrow-\left(3x+6\right)\le0\) với mọi giá trị của \(x\)
\(\Leftrightarrow-\left(3x+6\right)-16\le-16< 0\) với mọi giá trị của \(x\) (đpcm)
b) ta có : \(g\left(x\right)=-\left(3x+6\right)^2-16\le-16\) với mọi giá trị của \(x\) (chứng minh trên)
\(\Rightarrow\) GTLN của \(g\left(x\right)\) là \(-16\) khi \(-\left(3x+6\right)^2=0\Leftrightarrow3x+6=0\Leftrightarrow3x=-6\Leftrightarrow x=\dfrac{-6}{3}=-2\)
vậy GTLN của \(g\left(x\right)\) là \(-16\) khi \(x=-2\)
a) \(g\left(x\right)=-\left(3x+7\right)^2+2\left(3x+7\right)-17\)
\(=-\left[\left(3x+7\right)^2-2\left(3x+7\right).1+1+16\right]\)
\(=-\left(3x+7-1\right)^2-16\)
\(=-\left(3x+6\right)^2-16\)
Ta có: \(-\left(3x+6\right)^2\le0\forall x\Rightarrow-\left(3x+6\right)^2-16< 0\forall x\)
\(\Rightarrow\) đpcm
b) Dấu "=" xảy ra khi 3x + 6 = 0 hay x = -2
Vậy GTLN của g(x) là -16 khi x =-2.